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1

Green’s functions

1.1 Introduction

Many texts give expressions for displacements in plane-layered media due to point
forces and moment tensors (Levshin and Yanson, 1971; Takeuchi and Saito, 1972;
Keilis-Borok, 1989; Aki and Richards, 2002). These solutions are useful in regional
moment tensor studies. However there are occasions when one in interested in
the stresses and strains generated by a seismic source. Ground motions of a large
earthquake may be such to change the stresses acting on neighboring faults in a
way to facilitate local faulting. The newly introduced Distributed Acoustic Sensors
(DAS) systems measure the strain in a fiber optic cable with great spatial detail.
Interpreting earthquake data requires codes for predicting the observed strain.

In a cylindrical coordinate system for isotropic or transverse isotropic media,
15 Green’s functions must be computed to represent the displacement wave field
due to point force and moment tensor sources. If one is interested in strain, then
the partial derivatives of the displacement with respect to the z and r coordinates
at the observation point will require an additional 30 functions to be computed.
The partials with respect to azimuth will not require any significant computational
effort since .

Computationally one performs a wavenumber integration to obtain the complete
solution, but when the epicentral distance is large compared to the wavelength, a
superposition of surface-wave models can provide a reasonable approximation to
the exact solution by modeling the larger signals following S. This discussion re-
view s the Green’s functions and and shows the modifications required to generate
strain, stress and rotation time series.
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1.2 Introduction

Progress in seismology has always involved the interaction of advances in in-
strumentation and computation. Recently there has been an emphasis on measur-
ing strain using DAS (distributed acoustic sensors) and rotation. Thus the ques-
tion of quantitative monitoring of these observations arises. Strain measurements
have long been a topic in earthquake seismology (Benioff) using strain meters and
dilatometers (Sacks) as well as in experimental rock mechanic procedures. Stress,
which is derivable from strain one the material properties are know, is of interest
in the remote triggering of earthquakes (Landers - Spudich).

The focus on this chapter is the generation of stress, strain and rotation time
series for point force and moment tensor sources in plane-layered isotropic media.
In line with the development through out the text, the synthetics will be computed
using a cylindrical coordinate system. Strains were defined for a Cartesian system
in §?? and for a cylindrical coordinate system in §1.3. Before adapting the previous
development to give stress, strain and rotation, we should review some continuum

mechanics and derive expression for stress and strain in cylindrical coordinates
(22-27).

1.3 Wave equation solutions in cylindrical coordinates

For a cylindrical coordinate system with coordinates (r, ¢, z), the equations of mo-
tion for the displacement u = (u,, ug, u;) are (Love, 1944; Aki and Richards, 2002)

u,  Oo,, 100y, 0oy 0
o ar r d¢ 0z r
azur aO'rr 1 ao—r¢ aO'rZ O-rr - O-¢¢
P = - + +
or? or r 0¢ 0z r
62u¢ (90',¢ 1 60'¢¢ 60'¢Z 20—r¢
ot  or T 0o " 0z T

P +F;

F,

P Fy

The local coordinate system is assumed to be such that z is positive downward.
In an isotropic medium, the stresses are related to displacements in a cylindrical
coordinate system through the relations (Hughes and Gaylord, 1964)

Tz = 2uey, Oz = AA + 2pe;,
Ty, = 2uey, O = AN + 2ue,, (1.3.1)
o, =2ue,, Tpp = AN + 2ueqy
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where the strains are defined as

o = Our o, = L[10ur Ous 1y
T or A rogp  or r
1 (Ouy 1(0u, du,
Y . == — 1.3.2
epp r(ﬁqﬁ +u) €r; 2((9r+8z) (1.3.2)
ou 1(0uy 10u
= w35+ 15)

and the dilatation A is given by

10(ru,)  10ug  du,
A=V-u= ——+— + —, 1.3.
u T ar + Y + oz (1.3.3)

The rotations are defined as

@ =3\738 " ar
_1{6u, Ou,

Wy, = 2( 7z ar) (1.3.4)
_ L[y 10u.

“o: =5\ "5, r 0¢

The derivation of these expressions for strain and rotation are given in the Ap-
pendix.

1.4 Green’s functions

For problems in which the material properties only vary in the z-direction, define
the displacements as

u,(r,z, w) = Z (An cos n¢ + B, sin n¢)

n

: f U.(k, z, w)J,(kr)kdk
0

u(r,z,w) = Z (An cos n¢ + B, sin n¢)

n

: f [Ur(k,z,w)ajn(kr) = 20Uy zo ) ukr)|dk (14.1)
0 or r

ug(r,z,w) = Z (An sinn¢ — B, cos n¢)

n
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0o i k
: f [U¢(k,z, )22 KD o) |k
0 or r

and the force per unit volume as

F.(r,z,w) = Z (A,, cos ng + By, sin n¢)

n

. f ) Sz(k, z, w)J, (kr)kdk
0

F.(r,z,w) = Z (A,, cos n¢ + B, sin n¢)

n

f [fr(k,z,a))ajn(kr) —Ef,p(k,z,w)Jn(kr)]dk (1.4.2)
0 or r

Fy(r,z,w) = Z (A,, sinn¢ — B, cos n¢)

n

: f [f¢(k,z,w)‘9]”(kr) ! f,(k,z,w)Jn(kr)]dk
0 or r

If one defines the transformed stresses as

du”
T, = M (d—zr +kU§n)

(n)

du
T, = (1+ 2u)d—; —kau™ (1.4.3)
(n)
_— udU 4
¢ dz
then the following ordinary differential equations must be solved for P-SV
U, 0 k0 ARUARRL
2
i UZ — A+2u 0 A+2u 0 UZ _ 0 (1 44)
dz | T, 0 —-pw? 0 k| |T. £ o
AP u(A+p) —kA
T, —pw’ + - 0 @ of T Jr
and
d U¢ 0 ]/[l U¢— 0
— = - 1.4.5
dz [T¢] [,ukz —pw® 0 | |Ts| |fe (145)

for SH. In these equations, the transformed displacements are functions of wavenum-
ber, angular frequency and vertical position. Because none of the terms within the
square matrices involve derivatives with respect to z, and since the medium pa-
rameters vary continuously or piecewise continuously with the z-coordinate, we
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immediately see that the parameters U,, U,, Uy, T,, T, and Ty must be continu-
ous at depths where the force terms are zero. Discontinuities in these parameters
will occur when crossing the source layer. These discontinuities are used with the
propagator and reflection matrix techniques for solving these differential equations.
Modal superposition techniques work directly with the forces.

Solutions of the wave equation in cylindrical coordinates for a point force and/or
moment tensor source can be written as follows:

u(r,z,h,w) = (Fycos¢ + Forsing)ZHF + F3ZVF

- ZSS ZDD  ZEX
+ M | cos(2¢) — _6 + —3 ]
—7S S ZDD  ZEX
+ My cos(24) ~ == + T]
y ' ZDD , ZEX
33 |73 3
+ M, [ZSS s1n(2¢))]

+

M3 [ZDS cos(¢)]
Mas [ZDS sin(@)]
u(r,z,h,w) = (Ficos¢ + Frsing)RHF + F3RVF

+

[ RSS RDD REX
+ My T COS(2¢)) — T + T]
[—RS S RDD REX
+ M» — cos(2¢) — - T3 (1.4.6)
[ RDD REX
+ M3 |—— + ——
[ 3 3
+ M, [RSS s1n(2¢)]

+

My3 [RDS cos(¢)]
Mas [RDS sin(¢)]
ug(r,z,h,w) = (=Fysin¢ + Frcos ) THF

sin(2¢))]

+

+

TSS
M, [
-TSS

+

Mo | sin(29)|

M, [—TSS COS(2¢)]
M3 [TDS sin(9)]
Mys [-TDS cos(¢)] .

+ + +

This expression assumes that the moment tensor, M;;, is symmetric. The terms as-
sociated Fi, F; and F3 are the medium response to a point force, while the other
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functions are the response to specific moment tensor expressions. The functions,
e.g., ZSS, within the square brackets are the Green’s functions for one particular
representation of forces. The terminology used for these basic force and moment
tensor solutions is simple. The leading Z, R or T, indicates the component of mo-
tion. The S'S indicates that the solution is due to a strike-slip source, with only
M, # 0 or with M;; = —M>,, with other elements zero. The DS solution is associ-
ated with a vertical dip-slip source with only M3 # 0 or M3 # 0. The EX solution
is for an isotropic center of expansion source with M, = My, = M33. The DD so-
lution does not correspond to a fault source, but can be understood as that part
of a vertical or radial displacements for a 45° dip-sip source (e.g., My = —M33)
observed at an azimuth of 45°. The DD component is multiplied by the terms
2M33 — M1 — M>; which is known as a compensated linear vector dipole.

1.5 Computation of stress, strain and rotation

Rather than using explicit expressions for strain, stress and rotation, the decision
was made to first generate the time series for the partial derivatives of the displace-
ment with respect to r, ¢ and z, and then later combine them to make the desired
time series for strain or rotation. To illustrate the required steps, we consider the
vertical displacement for a strike-slip source defined by M, with all other terms
equal to zero. Starting with

u(r,z,h,w) = + My [ZSS sin(2¢)] (1.5.1)

The partial derivatives are

%(r, zh,w) = M [BZSS sin(2¢)] (1.5.2)
or or

(Z—L(;Z(r,z, h,w) = My [2ZSS cos(2¢)] (1.5.3)
aa—f(r, z,h,w) =M, [aZSS sin(2¢)] (1.5.4)
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1.5.1 Wavenumber integration

Thus it is necessary to compute time series for ZS S, 0ZS S /0r and 0ZS S /0z. From
(1.4.1) we see that

Y4 © 9Tk
0255 :f 0,90 (1.5.5)
or 0 or
ooaUSS
0255 _ f < J,(kr)kdk (1.5.6)
0z 0 Z
_ * 1 SS SS
= j; /“_2“(TZ + kUSS)J, (kr)kdk (1.5.7)

The latter expression arise from the definition of 7, in (1.4.3).

For a arbitrary source, We note that 15 functions, e.g., ZDD, ..., THF must be
computed to obtain the displacements and d/d¢ and another 30 for obtain the d/dr
and 0/0z.

1.5.2 Modal superposition

For media that have locked mode solutions, modal superposition techniques can be
used to form the time series corresponding to the pole contributions (Levshin and
Yanson, 1971; Takeuchi and Saito, 1972; Keilis-Borok, 1989; Aki and Richards,
2002). Following Levshin and Yanson (1971), the far-field pole contribution of
integrals of the form

uz(r,z,h,a)):f U.(k, z, h, w)J,(kr)kdk (1.5.8)
0

is of the form
u(r, 2, h, ) = —iA L gDk, hy, @)U (ks 2, 0)HE (k) (1.5.9)

2 7 n nm
= —ﬂiAL’RD(km, h, U-))Uz(kma Z, (.U) A ' —e_l(kmr_Z_T (1510)
Tt
(1.5.11)

In these equations # is the source depth, z is the receiver depth, k,, = w/c;, is
the wavenumber corresponding to the phase velocity c,,. The U, evaluated at the
receiver depth is the eigenfunction corresponding to the homogeneous solution of
(1.4.4, 1.4.5). The D() is a function of wavenumber and the eigenfunctions at the
source depth.

To obtain the required partial derivatives of the displacement, the §/d¢ is com-
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X1
Xr

X

Figure 1.1 Transformation between (r, ¢, z) coordinate system to an (x,y,z) co-
ordinate system. The z-coordinate is down into the figure. The ¢ component of
motion is the transverse component. Often the (x,y) axes are aligned north and
east, respectively. In the case of DAS systems, one might align the x-axis with the
direction of the fiber.

puted as before. The other partials are

—(r Z,h, w) = —miAp RD(kyy, h, W)U, (kpy, 2, w)(—iky,) , —z(k r—Z_nmmy

a n nm
%(r, 2. h, ) = —mtiAL gDk b, cu) (km,z, w),/ emiknr=5-5) " (15.12)
Z

() /nir S

1.6 Conversion of cylindrical strain to cartesian

—niAp RD(k, h, cu)

The choice of using a cylindrical coordinate system to describe wave propagation
was made for computational efficiency, since the cartesian displacement at any
point can be obtained from the cylindrical through a simple coordinate system
rotation. Consider the coordinate system shown in Figure 1.1. The displacements
in the (x, y, z) coordinate system are related to those in the (r, ¢, z) system through
the transformation

sinf  cosf Of|ugs
1] |y,

l Icos@ —sinf 0][u,
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Bower (2010) showed how to relate stresses in a cylindrical coordinate system
to those in a Cartesian system. Rearranging those gives

Oxx Oy Ox| [cos® —sing O] [o, o9 or|[cosd sing 0
Oxy Oy Oy |=|sin@ cos@ Of|o,y 0pg 0Ty | |—sin 9 cos 0 0
Ox, Oy, 0z | O 0 1 |op, 0y, 0z 1

A similar transformation is used to relate cartesian strains to cylindrical strains.

exx ey ex| [cos® —sin® 0] [e, ey e|[cos® sing 0
ey ey e;|=|sinf cosf Of ey egs ey ||—sinf cosf 0
ey, e; ez | 0 0 1| e, ep; ez 0 0 1

Finally the expressions for rotation are

0 Wyxy Wy cosf —sinf O 0 Wy Wy||cosf sing 0O
Wy, 0  wy|=|sind cosf O||-wys 0 wy||-sinf cosd 0
—Wy, —wy; 0 0 0 I |[~w, -wg; O 0 0 1



Appendix A

Stress, strain and rotetion

A.1 Introduction

The focus on this appendix is the expression of stress, strain and rotation in cylin-

drical coordinates. Strains for a Cartesian system in are defined as e;; = %(% + %)
. . . . . . j o
and for a cylindrical coordinate system in §1.3. This appendix derives the expres-

sions for strain oin cylindrical coordinates.

A.2 Strain

Following (Sollberger et al., 2020), consider a point X where there is a displacement
u, e.g., u = u(x). At a position x + 0x, the displacement would be u(x + 6x) =
u(x) + du where

uy ouy ouy

ouj 0x an  Ju o 0x
ou=|dup|= G oup | = (%]2 a—)ué 8_)12 ouy (A.Z.])
Suts 5x3 Qus — Ouy  Ous || 5

ox| oxy  Ox3

The matrix G can be written as
_1 T 1 T
G_E(G+G )+§(G—G ) (A.2.2)
The differential displacement can also be written as

ou = €6x + QOx (A.2.3)

The first term on the right is the infinitesimal strain tensor and the second is the
rotation tensor, e.g.,

Juy 1(% + %) 1(% + %)
1 0x1 2\ dxp ox1 2\ 0x3 ox1
S T\ _ | 10w %) Ouy L(% %)
€= 2(G + G ) - 2(6)6] 0x> oxp 2\ dx3 + oxp (A24)
L(% %) L(% %) Ous
2\ dx; 0x3 2\ dxp dx3 dx3
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and
1{0u; Oy 1( duy ouz
| 0 35 - 52) 3(5 - 52)
—(c_cT) = |1(ow _ ou L(0uy _ Ous
9 - 2(G G )_ 2(8)61 8x2) 0 2(6)63 axz) . (A25)
L(% _ %) L(% _ %) 0
2\ dx; 0x3 2\ dx, 0x3
The differential displacment can also be written as
Su = €6X + QX = €6X + @ X X (A.2.6)
where the rotation vector is defined as
(7 - 52)
1 0xo ox3
- _ Ouy ous
@ =5Vxu=g (32 - =) (A.2.7)
2

(7 - 72)

0x1 oxp

This vector notation shows that the wi, element of Q is associated with the e3
vector component of @, indicating a rotation in the 1 — 2 plane.

A.2.1 Cartesian coordinate system rotation

Now consider a primed Cartesian coordinate system rleated to the unprimed system
through the transformation matrix, such that

X1/ ar a2 aiz||x X1
lxzw = lagl a» axyl||x|= T X |. (A.2.8)
X3 azy asxn  as||x3 X3
where T is an orthonormal matrix, e.g., TT = T-!. In addition, the displacments in
the two coordinate systems are related by u’ = T?u. By the chain rule of differen-

tiation,
00 _ () oxy N () Oxo N 0() Oxz
axl axy axl a)Q/ 8x1 GX3/ 8x1
_90 90 90
B axy H a)Q
The partials with respect to x; and x3 are similarly defined. The deformation in this
new coordinate system is defined as

(A2.9)

ou =€ 6x + Q' ox (A.2.10)
where
Juyr L(ﬂu_v + M) L(M + %)
P 6)6]/ P 2 8)62/8 ﬁxlz 2 gxy @)X]/
P | Ly e Ouy 1(Ouy | duy
€ = 2((’)x1/ + ax2,) Ty 2((')x3/ + (')xz/) (A.2.11)
L(f?u_s' + M) L(ﬂu_s' M) Ouy
2 8x1/ a)Cy 2 ale 6x3/ a)Cy
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and
0 L(ﬁu_v _ %) L(ﬁu_v _ %)
2\ 0xy oxyr 2\ Oxz gxl/
r o |1 _ M) l(ﬂu_z' - &)
Q 2((9x]/ Oxy 0 2\oxy ~ oxy /|- (A.2.12)
l("ﬁ - M) l(f%t_z' - %) 0
2\ dxy Oxzr 2\ 0xy Oxzr
Since u; = ajuy + ax1uy + azjus, we have, for example,
o = 612 8u1/a a (aulf au2')+
1= Tanmi\— +t 7 —
“3)61' ang 8x1'
8u1' N f)ugf + 2 8u2'
011031(— —) ay\ 77—
Oxy  Oxp 21 9xys
Ouy Oduyy 5 Ouy (A.2.13)
apazi|\—— + — a3 77—
aX3' ang aX3'
ayy ay asi|le; €, €illan
— ’ ’ ’
=1 ... 821 822 823 any
’ ’ ’
€31 €3 €33]l431
or
€ =TTeT (A.2.14)

which is similar to the effect of a coordinate system rotation on the moment tensor.
A similar derivation would show that

Q' =T'QT (A.2.15)
Because T is orthogonal, it follows that
e=TeTT (A.2.16)
and
Q=T1TQ'T! (A.2.17)

A.3 Cylindrical coordinate systems

Fung (1994) provided a simple derivation to express strain in a cylindrical coor-
dinate system. First define the primed coordinate system as one that arises from a
simple rotation matrix e.g.,

cos¢p sing O
T! = |-sing cosp O
0 0 1

(A3.1)
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Such that X’ = T”x. In this new coordinate system, we define u, = uy,

and u; = uz . Thus
U| = Uy COS ¢ — Uy Sin ¢
Uy = U, Sin ¢ + ug cos ¢.
usz = Uy
If the strain matrix in the primed-coordinate system is defined as
/ /
€rr €r¢ 11 €12 13
/ /
€pr e¢¢ e¢z = 321 €n €3
/ /
€ €n ey

then the one can easily show that

er = e cos> ¢+ exn sin® ¢+ e sin2¢
ey = €11 sin® ¢+ exn cos? ¢ — e sin2¢
erg = (€2n —eq1)cos psing + elz(c032 - sin’ 1))

€,; = €13C0S ¢ + ex3 sin @
es; = —e13Sing + e3 cos ¢

€7z = €33

Similarly if the rotation matrix is defined as

’ /
0 Wrp Wy Wi, Wi
’ /
—Wrg ‘U¢z ‘“21 0 Wrs|»
’ 4
—Wy; cu%1 —wh, 0

then the one can easily show that
Wrp = W12
Wy; = W13 COS @ + Wy3 Sin @

—w13 Sin ¢ + wy3 COS @

a)¢z

13

M¢ = Uy

(A3.2)

(A.3.3)

(A34)

(A.35)

(A.3.6)

The next step is to express the ¢;; and w;; in terms of cylindrical coordinates

and then substitute these into these expressions. To express the a”’

cylindrical coordinates, we need the operators

g_ga op o 0 sing 0
ox axﬁr axa¢ 0 ro oo
0 O0rad 8¢ 0 . .0 cos¢ 0
— = = =sing— + —
ay ay(')r aya¢ 0 ro0¢

in terms of the

(A3.7)

(A.3.8)



14 Stress, strain and rotetion November 28, 2024

Using these we have

Ouy ( g _sing 0 )(u, COS ¢ — Uy Sin )

ax ar r 9

- coszqﬁ(?9 + sin ¢(— + %MZ) - cos¢Sln¢(% + fg(; - u7¢)
Z—Z? = (cos ¢% _sing a¢)(u, sin @ + ug cos @)

= sin¢cos¢(%urr - % - #) +cosz¢% _s 2(1)(;9(;4;5 _ ”7115)
o (mbg e,
22 (sm ¢— + Cos¢aa¢)(ur COS ¢ — Uy Sin )

= —sin ¢8_ur¢ + cos ¢( 96 uj) +cos¢sin¢(%urr - fai;z - %)

Oup (. 0 cos¢ d )
Tny (sm ¢(’)r + " ¢)(ur sin ¢ + ug cos @) (A3.9)
ou ouy Ou, u
= sin’ ¢ =+ cos ¢(—+7:;)+cos¢sm¢(a—¢ r8¢_7¢)
ou cos¢ 0
axz (SIH¢E r¢8¢)
. ,Ou, cos¢ou
oG+ G
aul _ 0 .
6_x3 = (6 )(urcosqﬁ— Ug Sin @)
= Cos ¢6_ — sin ¢)—
0z
Ou (0 )
(9_x3 = ((9_z)(ur sin ¢ + uy COS ¢)
. al/tr 8u¢
= sin ¢6_z + cos ¢6_z
Ous _ Ouy
dxs 0z

Substituting these into the definitions for ¢;; and w;;, one then arrives at the
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folowing expressions for strain and rotation in cylindrical coordinates:

_ Oy _ 110w Duy
= or e = 2\¥ op or r
1 (Ouy 1(0u, du,
S = | == A3.1
s r(6¢+u) e, 2((9r+(9z) (A.3.10)
ou 1{Oug 10u
=G € = E(a_z+?a_<;)

and

v=3lves "o
_1{0u, Ou,

Wr: E(a_z_ﬁr)
1 Ouy 1 0u,

=35 -3 5)

and the dilatation A is given by

1
Vo) | 10 o
r or r ¢ 0z

A=V.u= = ey t+egy t+ ey (A.3.11)

which is as expected for a divergence in cylindrical coordinates.

A.4 Computation of Cartesian strains, stresses and rotations

The effort in the previous section showed how to compute the stresses and rotations
in a cylindrical coordinate system in terms of the cylindrical displacements. This
is a requirement before modifying existing code to also compute these new quanti-
ties. However it will be necessary to transform these quantities to a local cartesian
system to compare with observations.

Thus far the (r, @, z) refer to the position of the observation point with respect
to the source of the signal. Now consider the local coordinate system in Figure
A.1. Here the e, and e, indicate the radial and transverse directions with respec to
the source. A new coordinate system x-y is imposed at the observation point, O.
The x vector ez makes an angle 6 with respect to the x—axis. The local coorinate
system axes do not have to be oriented N-S or E-W, respectively. In the case of
DAS measurements, the x—axis may be aligned with respect to the direction of the
fiber cable.
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X

Figure A.1 Sketch of local coordinate system at observation point.

These coordinate systems are related by the transformation

cosd —sinf Of|u,
sin 9 cos 9 Of|us (A4.1)
1]|u,
where the square matrix is defined as T.
Applying the tensor rotation rules, we have
el en e (e, €y e
€21 €2 ex3| = T €¢r €¢¢ €¢Z TT (A.4.2)
€31 €3 €33 | €zr €9z €z
In a similar manner the rotated stresses are
g o012 0—137 Eo-rr Oryp Oz
T
021 02 03|=T|og 0gs 0| T (A4.3)
031 032 033] | Ozr O¢z Oz
and the transformed rotatations are
0 w12 (1)137 [ 0 Wrp  Wrg
—wy1 0 wn|=Tl-wy 0  we|T" (A.4.4)
—w3 —wxn 0 | —w, —wg, O

Finally the dilatation is

A=ej+exn+e3=e,+epy+ey (A4)5)
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