This document ngews multiple filter analysis, and the adaptation to that processing tech-
nique to estimate phase velocities through the cross-correlation of recorded noise.

Multiple Filter Analysis
The following discussion of multiple filter analysis follows Herrmann (1973).
Let the dispersed surfaceavebe represented by the relation

f(t,r) = %T [ Flon) expiatdae (1)

where
F(w, r)=A(w,r)exp(-ikr + ¢) (2)

andg is the source phase akds the vavenumber which is related to the phaselocity
through the definitiom = kc.

The processing starts with the application of a mafandpass Gaussian filter about a
center frequency, by the filterH (w — wg) where the functiord is defined as
Oexp(-aw?lw?) || < w;

H(w) =0
0 0 || > e

3)

Under the condition thatr{w?)? > (r/2d?k/dwd)?, the filtered signal is

2

1 ey /S . U o 0
9(t.1) = 5~ Awowo[ - eli(ant ~ kot +Plexp > (t-1U’D  (4)
m a O 4a 0

The last term defines thewasope, which is a maximum at a time corresponding to a
group velocity arnal. The group elocity, U, is defined adJ = dw/dk. This epression
indicates that the namoband-pass filtered signal can be used to estimate the group
velocity by using the time of eelope maximum and the spectral amplitudlat w = wy,
through the evelope amplitude, e.g.,

A= 2rlwo)/(alm) |g(riUg, )| (5)

The phase term can be used to estimate the pleéssty if the source term in k.
The phase at the group velocity aalj e.g.,t =r/Uy, is
d=tan? gm g(r/Jg,r) Reg(r/Ug,r)] =rwg/U —rawg/lc + o+ N2 (6)

The N2 term arises because of the periodicity of thét&umction.

The source phase term can be eliminated if @dtation technique is used, e.qg., ifotw
stations are used along the same azimuth from the source. In this case the difference in
the ®’s for each trace would be interpreted as

(DZ - cbl = (l’2 - rl)wO(].M - 1/C) + (N2 - N1)27T
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Fourier Transform

The deelopment here follas Lin et al (2008) who used the results of Snieder (2004).
The significant dierence between the d#opment in those papers and that used here is
in the definition of the Fourier transform palihe Computer Programs in Seismology
codes use the ceention

(e0]

H(w) = J’ h(t) exp(-iwt)dt
and, for the imerse transform,
1 00
h(t) = — I H (w) exp(+i wt)dt
2 Ea

With this definition, one can siWdhat the Fourier transform pair for cross-correlation is

(0]

Coo(t) = _[ Xo ()Xo (7 +0)d7 o X(w) Xy (w)

Stationary Phase Approximation to an Integral In addition recall that the method of
stationary phase can be used to approximate an integral

00 =1/2
| = j g(k)e'Wdk = V2 g(ko)e'®e" s o= (7)
dk?
—00 D D(:ko
wherek = kj is that value ok that malesdf/dk = 0 and thet sign is taken according to
. 2 fo
whether thesign OfDW D|s tist.

Point Force Green’s Function

Since we will focus on surfaceawes, a reiew of the point source Greenfunc-
tions is appropriate. The 3-component displacements for in impidsirce pooint force
observed at an azimuthare

u,=(F,cosp+ F,sing) ZHF + F3 ZVF
u, =(F, cosp+ F,sing) RHF + F3; RVF

u,=(F1ising—F,cosp) THF +F3

where the forces;, F, andF3, are in the north, east andwoward directions, respec-
tively, and ¢ is the azimuth from the source to the obagon point measured in a direc-
tion east of north. (Note thigis not the same as that of (6)).

For fundamental mode surfaceawes in the far field, the expressions for the func-
tions in this expression are
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whereA =1/2c U |y for the Love waveand Ag = 1/2cgURl or for the Rayleigh \ave

The eigenfunctionsl,, U, andU , are solutions of differential equations for P-SV and SH

waves with the boundary conditions of zero stresz a0 and expnentially derease as

z - oo. For the fundamental mode Rayleigrawe the ellipticity U,/U, is positve &

z=0. Finally z represents the reser depth anch the source depth in the halfspace. The
(0]

enegy intggrals are defined in terms of integrals fof the eigenfunctiorﬂ‘qas! pU¢2dz

00

andAg = ! p[U,% +U,?]dz and

The second»@ression for each Greenfunctions rearranges the compleart of
the solution into a form that will appear later when considering random souces of scatter
ing.

Given the back azimuthg,, from the observation point to the source, the Cartesian
displacements are\gin by a $mple transformation:

(u, 0 Fcosg, Sing, O00u, O

OO _ od, O
Ehy 00 sing, COoSg, OD%J‘”D
00 O 0  1lpgmv:p

Scattering and Coda waves

To understand the result of cross-correlating the noise recording® dbdations,
we follow the exposition by Snieder (2004). The significant difference between our
derivation and that of Snieder arises from the definition of the Fourier transfieomR
and k positve, exp(-ikR) represents a awe propagtion in the+R direction as time
increases in our formulation, but as ekRj in that of Snieder (2004).

Consider Figure 1, which is adapted from Snieder (2004). The source of the
observed signal is generated at the scattering source.
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The Fourier transformed vector displacement, in cartesian coordinates) ab thieses-
vation points can be written as

s T

1O citknXirs)
?/EFXizD
The indices, 1 or 2, refer to the specific obagon point,m to the mode (and awvetype
corresponding to each displacement comporsetat the scattering sourck,to the souce
depth, z to the recaier depth, andX to the horizontal distance from the source to the

recever. The concept of modm is generalized to combine the concepts of eigenfunction
mode and avdype.

While Sneider considered that the panwould be the source of scatteredwss,
we see that (9) can also be ionterpreted as the superposition of point forces aplied at
This is the reason that the square brackets are use to emphasize the similarity to (8).

Snieder (2004) n@ assumes a distrittion of scatterers in the x-y plane that-per
mits replacing the summatiorve the scatterers to an integral in the y plane. Ifn is
the density of scatterers per unit area, then the cross-correlation between the recordings
on component at recever 1 an @mponentj at recever two is

00

C;(t) = I Uy (T)uy (t +7)d7

O
Uy o(w) = % % sem EDHJm(h, 12, 1,2 9)

or

Cij(w) = Z,In(x, y) P(h, Zz, @) P * (h, 21, 1) S™(w)S™ (@) * i

o1 (kX X0)
E————— dxdy
\/T(m-km'_)(z-xl

Now integrate wer the y-coordinate, using the method of stationary phase. The condition
for stationary phase requires the 0. Using (7), the cross-correlation becomes
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Cij(w):% J’Vinpim(h, 25, 92) PJ" (h, 22, 1) S™ (@) S™ () *

1 1 i knlRXken X ) o
Vo VIRnlR= K= Koy |
wheren is £1 depending on the sign ef(k,/|R - X| = ky/|X|), 9., +1 for x <0 and -1
for x> R.

Snieder(2004) ne argues that the integralver x has a non-zero contrabions
when the exponential is not oscillatpwhich occurs only fox < 0 and for x > R The

reason for this statement is thakik O, the exponential if of the formi(kR -7 ) and

(10)

-i(-kR-n ) for x> R. For 0< x < R, the exponential depends anand is thus does

not contrlbute to the integral. Also teaid an osciallating intgral, thek,, must equal
k,. This latter point means that for isotropic or traersely isotropic media, that the
only non-zero cross-correlations will be those betweeat recevers 1 and 2, and simi-
larly between theuy,’s and theu,’s, which will the recerers, u,’s which will involve
Rayleigh-wvavemotion for the first tw and Love for the last. In addition, the gross corre-
lations between the, and theu, will be non zero because both will record the Rayleigh

wave. In the latter case the there will be—aphase difference between thg - u,, and
theu,, - u,, cross-correlations.
As a result of these considerations (eqn 23 in Sneddeq),

Cij(w) = VZHZD—_ ! g 'knR7g

M(h, z,, 0)p™(h, z;, 0) * ndx
mD \fkm Ip|( Z)pj( l)

1 +i _LT 00 Di
+ C_m — € (kR 4) plm(h, Z5, 7T) prjﬂ(h’ Zq, 77) *n dxl:”:sm(w)ljz (11)
w \[RmR ]
The first term represents signals generated in tienrex < -0 propagting in the posi-

tive x- direction , while the second represents signals generated ingibe > R and
propagating in the mgtive x-direction.

For cross-correlations between the same components at each station,grendge
will be real. Thus the awvepropagation

For purposes of relating the signals to the point force Gsefmctions, we note
that the intgrand is real for the cross-correlation of the same compon&hts. means
that the phase term in (2) 784, and thus a phase velocity can be obtained as part of the
multiple filter processing.

After further consideration, Sbeider (2004yesi

OGM(r, 1) L) r) % i dxgmz w2

C.. - C Di
”(w) n% mD lw _.!o D i O 0

where the T denotes the Hermitian conjugate.
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This neans that the cross-correlation of uniformly distad noise sources will
give a ymmetric function about zero time lag. Recall that tijsression arises from the
cornvolution of the displacement series. Thus the cross-correlation is prpoprtional to the
integral of the Grene’function.

The estimation of phasebcity focuses on the phase term. What happens if cross-
correlates ground velocity rather than ground displacment. The result is that (12) will
have a kadingw? term due to the fact that in the frequgrdpmain, cross-correlation
invived multiplying the spectrum at one location by the comptmjugate of the spec-
trum at the other site, thususp2 = (iw)(iw*). Thus the phase term of the cross-correla-
tion is not changes, just the amlitude spectrum.

Thus for cross-correlating the Z components at tleedations, or the E or N com-
ponents, equation (6) can be rearranged teedohthe phase velocity:

_ C()Or (8)
"~ + /4 + wor lUg + N277

Note that this expression ftlifs from Equation (7) of Lin et al (2008) in the sign of the
714 term. The difference is assumed to be due to the definition ofotlméeF transform
used.

While discussion the cross-correlation, it is also useful to consider the circum-
stances under which (8) could be used with synthetics. Specifically can one use the ZVF
RHF and THF Greer’functions as surrogrates for the cross-correlation. Note that each
of these contains a term suef™? in the square brackets on the right. Rather than per
forming a Hilbert transform on the synthetic, or since the primary interest is in preserving
the pahse term, a multiplication bi/iw, which is an integration and a polarityveesal
will adjust the phase term from ZVF and RHFhe THF requires an additional multipli-
cation by-1 in order to hae the phase term agree with the phase term toresvpropa-
gaing in the+x direction in (7).

It is simple using thent command ofgsac to perform these operation. The only
point to recall is that thepulse96 command to compute a recorded velocities for a step
source, the deflllt procedure ges a tme history that is equalent to the ground dis-
placement for an impuklg urce. The assertion is easily seen from Fourier transforms.

The specific command sequence iggiin the section "Generating the proper syn-
thetic® which mentions the script in EMPIRICAL_GREEN/DIST/EXAM-
PLE.GRN/DOIT.

Summary

This document rgewed multiple filter analysis and shoedwhthe output can be
used to determine phaselocity from inter-station empirical Greanfunctions. This
required a reew and adaptation of the papen Bnieder (2004). Finally a way was deter
mined to use synthetics from point forces get phase velocities.

c
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