
This document reviews multiple filter analysis, and the adaptation to that processing tech-
nique to estimate phase velocities through the cross-correlation of recorded noise.

Multiple Filter Analysis

The following discussion of multiple filter analysis follows Herrmann (1973).

Let the dispersed surface wav ebe represented by the relation

f (t, r) =
1

2π

∞

−∞
∫ F(ω , r) exp(iω t)dω (1)

where

F(ω , r) = A(ω , r) exp(−ikr + φ ) (2)

andφ is the source phase andk is the wav enumber, which is related to the phase velocity
through the definitionω = kc.

The processing starts with the application of a narrow bandpass Gaussian filter about a
center frequencyω0 by the filterH(ω − ω0) where the functionH is defined as

H(ω ) =




exp(−αω 2/ω 2
0)

0

|ω | ≤ ω c

|ω | > ω c
(3)

Under the condition that (α /ω 2
0)2 >> (r/2d2k/dω 2

0)2, the filtered signal is
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α
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


−

ω 2
0

4α
(t − r/U0)2
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

(4)

The last term defines the envelope, which is a maximum at a time corresponding to a
group velocity arrival. The group velocity, U , is defined asU = dω /dk. This expression
indicates that the narrow band-pass filtered signal can be used to estimate the group
velocity by using the time of envelope maximum and the spectral amplitudeA at ω = ω0,
through the envelope amplitude, e.g.,

A = (2π /ω0)√ (α /π ) |g(r/U0, r)| (5)

The phase term can be used to estimate the phase velocity if the source term in known.
The phase at the group velocity arrival, e.g.,t = r/U0, is

Φ = tan−1 

Im g(r/U0, r)/ Reg(r/U0, r)] = rω0/U − rω0/c + φ + N2π (6)

The N2π term arises because of the periodicity of the tan−1 function.

The source phase term can be eliminated if a two-station technique is used, e.g., if two
stations are used along the same azimuth from the source. In this case the difference in
theΦ’s for each trace would be interpreted as

Φ2 − Φ1 = (r2 − r1)ω0(1 /U − 1/c) + (N2 − N1)2π
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Fourier Transform

The development here follows Lin et al (2008) who used the results of Snieder (2004).
The significant difference between the development in those papers and that used here is
in the definition of the Fourier transform pair. The Computer Programs in Seismology
codes use the convention

H(ω ) =
∞

−∞
∫ h(t) exp(−iω t)dt

and, for the inverse transform,

h(t) =
1

2π

∞

−∞
∫ H(ω ) exp(+iω t)dt

With this definition, one can show that the Fourier transform pair for cross-correlation is

C12(t) =
∞

−∞
∫ x2(τ )x1(τ + t)dτ ↔ X *

2(ω )X1(ω )

Stationary Phase Approximation to an Integral In addition recall that the method of
stationary phase can be used to approximate an integral

I =
∞

−∞
∫ g(k)eif (k)dk ≈ √ 2π g(k0)eif (k0)e

±i
π
4





d2 f

dk2





−1/2

k=k0

(7)

wherek = k0 is that value ofk that makesdf /dk = 0 and the± sign is taken according to

whether thesign of


d2 f

dk2



is ± is ±.

Point Force Green’s Function

Since we will focus on surface wav es, a review of the point source Green’s func-
tions is appropriate. The 3-component displacements for in impulsive source pooint force
observed at an azimuthφ are

uz = (F1 cosφ + F2 sinφ ) ZHF + F3 ZVF

ur = (F1 cosφ + F2 sinφ ) RHF + F3 RVF

uφ = (F1 sinφ − F2 cosφ ) THF + F3

where the forces,F1, F2 andF3, are in the north, east and downward directions, respec-
tively, and φ is the azimuth from the source to the observation point measured in a direc-
tion east of north. (Note thisφ is not the same as that of (6)).

For fundamental mode surface wav es in the far field, the expressions for the func-
tions in this expression are
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whereAL = 1/2cLUL I0L for the Love wav eand AR = 1/2cRUR I0R for the Rayleigh wav e.
The eigenfunctionsUz, Ur andUφ are solutions of differential equations for P-SV and SH
waves with the boundary conditions of zero stress atz = 0 and expnentially derease as
z → ∞. For the fundamental mode Rayleign wav e, the ellipticity Ur /Uz is positive at
z = 0. Finally z represents the receiver depth andh the source depth in the halfspace. The

energy integrals are defined in terms of integrals fof the eigenfunctions asAL =
∞

0
∫ ρUφ

2dz

andAR =
∞

0
∫ ρ[Uz

2 + Ur
2]dz and

The second expression for each Green’s functions rearranges the complex part of
the solution into a form that will appear later when considering random souces of scatter-
ing.

Given the back azimuth,φ b, from the observation point to the source, the Cartesian
displacements are given by a simple transformation:





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



=
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0

0
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Scattering and Coda waves

To understand the result of cross-correlating the noise recordings at two locations,
we follow the exposition by Snieder (2004). The significant difference between our
derivation and that of Snieder arises from the definition of the Fourier transform.For R
and k positive, exp(−ikR) represents a wav e propagation in the+R direction as time
increases in our formulation, but as exp(ikR) in that of Snieder (2004).

Consider Figure 1, which is adapted from Snieder (2004). The source of the
observed signal is generated at the scattering source.
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The Fourier transformed vector displacement, in cartesian coordinates) at the two obser-
vation points can be written as

U1,2(ω ) =
s
Σ

m
Σ S(s,m)




pm(h, z1,2,φ1,2)

1

√ km X s
1,2





e
−i(km X s

1,2−
π
4

)
(9)

The indices, 1 or 2, refer to the specific observation point,m to the mode (and wav etype
corresponding to each displacement component,s to the scattering source,h to the souce
depth, z to the receiver depth, andX to the horizontal distance from the source to the
receiver. The concept of modem is generalized to combine the concepts of eigenfunction
mode and wav etype.

While Sneider considered that the points would be the source of scattered wav es,
we see that (9) can also be ionterpreted as the superposition of point forces applied ats,
This is the reason that the square brackets are use to emphasize the similarity to (8).

Snieder (2004) now assumes a distribution of scatterers in the x-y plane that per-
mits replacing the summation over the scatterers to an integral in thex − y plane. Ifn is
the density of scatterers per unit area, then the cross-correlation between the recordings
on componenti at receiver 1 an componentj at receiver two is

Cij(t) =
∞

−∞
∫ u1 j(τ )u2i(t + τ )dτ

or

Cij(ω ) =
m,m′
Σ ∫ n(x, y) pm

i (h, z2,φ2) pm′
j * ( h, z1,φ1)Sm(ω )Sm′(ω ) *  ˆ

⋅
e−i(km X2−km′ X1)

√ km km′ X2X1

dx dy

Now integrate over the y-coordinate, using the method of stationary phase. The condition
for stationary phase requires they = 0. Using (7), the cross-correlation becomes
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Cij(ω ) =
m
Σ

∞

−∞
∫ √ 2π pm

i (h, z2,φ2) pm′
j (h, z1,φ1)Sm(ω )Sm′(ω ) *

1

√ km km′

1

√ |km|R − x| − km′|x||
e

−i(km|R−x|−km′|x|−η
π
4

)
dx (10)

whereη is ±1 depending on the sign of−(km/|R − x| − km′/|x|), e.g., +1 for x < 0  and −1
for x > R.

Snieder(2004) now argues that the integral over x has a non-zero contributions
when the exponential is not oscillatory, which occurs only forx < 0  and for x > R. The

reason for this statement is that ifx < 0, the exponential if of the form−i(kR − η
π
4

) and

−i(−kR − η
π
4

) for x > R. For 0 < x < R, the exponential depends onx and is thus does

not contribute to the integral. Also to avoid an osciallating integral, thekm must equal
km′. This latter point means that for isotropic or transversely isotropic media, that the
only non-zero cross-correlations will be those betweenuz at receivers 1 and 2, and simi-
larly between theuy ’s and theux ’s, which will the receivers, uy ’s which will involve
Rayleigh-wav emotion for the first two and Love for the last. In addition, the gross corre-
lations between theuz and theuy will be non-zero because both will record the Rayleigh

wave. In the latter case the there will be a
π
2

phase difference between theuz1
- uz2

and

theuz1
- uz2

cross-correlations.

As a result of these considerations (eqn 23 in Sneider, 2004),

Cij(ω ) = √ 2π
m
Σ





cm

ω
1

√ km R
e

−i(km R−
π
4

)
0

−∞
∫ pm

i (h, z2, 0)pm
j (h, z1, 0) * n dx

+
cm

ω
1

√ km R
e

+i(km R−
π
4

)
∞

0
∫ pm

i (h, z2, π )pm
j (h, z1, π ) * n dx





Sm(ω )
2

(11)

The first term represents signals generated in the region x < −0 propagating in the posi-
tive x- direction , while the second represents signals generated in the region x > R and
propagating in the negative x-direction.

For cross-correlations between the same components at each station, the integrands
will be real. Thus the wav epropagation

For purposes of relating the signals to the point force Green’s functions, we note
that the integrand is real for the cross-correlation of the same components.This means
that the phase term in (2) isπ /4, and thus a phase velocity can be obtained as part of the
multiple filter processing.

After further consideration, Sbeider (2004) gives

Cij(ω ) = π
m
Σ cm





Gm
ij (r2, r1)

iω

0

−∞
∫ ndx + 


Gm

ij (r1, r2)

iω



† ∞

R
∫ ndx





Sm(ω )
2

(12)

where the † denotes the Hermitian conjugate.
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This neans that the cross-correlation of uniformly distributed noise sources will
give a symmetric function about zero time lag. Recall that this expression arises from the
convolution of the displacement series. Thus the cross-correlation is prpoprtional to the
integral of the Grene’s function.

The estimation of phase velocity focuses on the phase term. What happens if cross-
correlates ground velocity rather than ground displacment. The result is that (12) will
have a leadingω 2 term due to the fact that in the frequency domain, cross-correlation
invlved multiplying the spectrum at one location by the complex conjugate of the spec-
trum at the other site, thusω usp2 = (iω )(iω *). Thus the phase term of the cross-correla-
tion is not changes, just the amlitude spectrum.

Thus for cross-correlating the Z components at the two stations, or the E or N com-
ponents, equation (6) can be rearranged to solve for the phase velocity:

c =
ω0r

−Φ + π /4 + ω0r/U0 + N2π
(8)

Note that this expression differs from Equation (7) of Lin et al (2008) in the sign of the
π /4 term. The difference is assumed to be due to the definition of the Fourier transform
used.

While discussion the cross-correlation, it is also useful to consider the circum-
stances under which (8) could be used with synthetics. Specifically can one use the ZVF,
RHF and THF Green’s functions as surrogrates for the cross-correlation. Note that each
of these contains a term suchei±π /2 in the square brackets on the right. Rather than per-
forming a Hilbert transform on the synthetic, or since the primary interest is in preserving
the pahse term, a multiplication by−1/iω , which is an integration and a polarity reversal
will adjust the phase term from ZVF and RHF. The THF requires an additional multipli-
cation by−1 in order to have the phase term agree with the phase term for wav es propa-
gating in the+x direction in (7).

It is simple using themt command ofgsac to perform these operation. The only
point to recall is that thespulse96 command to compute a recorded velocities for a step
source, the default procedure gives a time history that is equivalent to the ground dis-
placement for an impulsive source. The assertion is easily seen from Fourier transforms.

The specific command sequence is given in the section "Generating the proper syn-
thetic" which mentions the script in EMPIRICAL_GREEN/DIST/EXAM-
PLE.GRN/DOIT.

Summary

This document reviewed multiple filter analysis and shoed how the output can be
used to determine phase velocity from inter-station empirical Green’s functions. This
required a review and adaptation of the paper bu Snieder (2004). Finally a way was deter-
mined to use synthetics from point forces get phase velocities.
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