1. Introduction

This document pnades the theoretical basis for computing the static deformation
due to a point source in a plane layered isotropic medium. The discussion starts with the
infinite medium solutionfor the dynamic medium response for point and multipole
sources in cartesian coordinates, followed by an expression of the solutidmdinical
coordinates. Nd the static solution in cylindrical coordinates for a step source time func-
tion is derved by taking the limitw — 0. This solution permits the degtion of the dis-
placement-stress discontinuities across the source depth which are require@ tbesolv
transformed differential equations. Using various integrals of Bessel functions, the static
solution is described in terms of the cylindrical coordinate system. Next propagator matri-
ces are desloped from the homogeneous solution of théedéntial equation gerning
the z-dependence.

As a further test, the problem of displacement at theaserbf a halfspace is
derived both in the vavenumber and in the spatial domains as a tool &idating the
multilayered propagator matrix solution.

Finally we will use the resulting programs in a realistic test case.
2. Infinite medium solution

Consider the localx, X,, X3) coordinate system in Figure 1, with north andx,
east andk; down. Alternatvely this may be represented as any( z) coordinate system.

X1

\
X3

Fig. 1. Coordinate system fori#opment of the theoryNote that the the ceomntion for measurement at
the surface of the earth is thais positive ypward. Thus the vertical component off@omputed vaveorm
will be opposite in sign to that deed theoretically for thez-positive downward coordinte system, e.¢f,.

In the frequeng domain, theelastic medium response to a point force in space and with
an impulsve in time function is gren by the relation

where G;; is the furier transform of théth component of displacement for a unit force
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in the j'th direction and thé-; are the Burier transforms of the point forces acting in the

j — direction. The point force acts at the orgin of the coordinate sysféne G; are
given by

47tpGy(x.@) = By, - &) eXp(-iwR/ @) | (- 2 R)
+@3¥y; - 5;) exp(-iwR/ )/ iwa R)
+yiy; e(~iwR/ )/ (a®R)
~(3¥y; - &) exp(-iwR/ )| (- P R) (5.3.19)
-3y, - &) exp(-iwR/ B) I (1wBRP)
-y, &p(-iwR/ B)I (BR)

+3; exp(—iwR/ B) 1 (B°R)

where RP=xZ+ x5+ X3, and the direction cosine is definedjgs x;/R. The compres-
sional- and shearavevelocities are indicted by and g, respectiely, and the density by
p.

If the force applied is step-k then the displacement traces in the time domain
have a $ep offset at times following the Sawearrival. This is illustrated in Figure 2.
These offsets are the permanent deformation due to the application of a step force.

L
At

Fig. 2. Infinite medium response to a point force inxhdirection at a location (14.14, 14.14, 0.6rom a

source located at (0,0, 5). In the figltgis in the up-direction, andU,, are positre in the direction of
increasing andg, respectiely.
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This of'set can easily be obtained by taking the limit of (5.3.12) as 0. The rea-
son for this is ery simple. Letd(t) be the displacement as a function tpfwhich is
t

related to the elocity, v(t), by the intgral d(t)= I v(r)dr. The Fourier transform of
—00

00 o]

the \elocity time historyV(w) = Iv(r)e““”dr, aw=0isV(0)= J’v(r)dr. Thus we
—00 —00

see thatl(co) = V(0).

If the applied force,F(t), is a step lik function, e.g.,tlim F;(t) = Fg;j, then
Foj:Iimoij(a)). In the simplest case, consider the simple time functigp(t).
Using the Burier transform of this step force, the Fourier transform of the groelod-v
ity

U =i Gy Fo: ro(e) + — O
o T il

Taking the limitw — 0, we see that
d(00) =V (0) =G;; Fy;
The statiadisplacement for a point step force with a step time function in theection
is thus
AR
Note that the distance dependence of this permanent deformafigR 3.

Next we consider the isotropic elastic medium response for the couple and dipole
sources. The Fourier transform of the displacement is related to the moment tnesor ele-
ments through the relation

Ui =Gijj x M

In this expression, the notatidsy; , means-0G;;/dx, where thex, is the coordinate of
the observastion point. Tl , is expressly gien by the relation

4110(i )Gy == (3K Tk + 3y Ok + 3Ty — 1511y vi) exp(-i wRla) (L/RY)

1 1 1
Anpg; = 55 1Y _O_ij)(ﬁ -2

~ (31 Jik * 3k * 33 — 15/ ¥ ) exp(-iwRla) (LIR) (iwla)

~ (W3 * ¥jOk + VS — 6 yi¥i) exp(-i wRla) (LR (iwla)?

+ vy eXpEiwRa) (LUR) (i wla)? (5.4.6)
+ (31 +3yj 0k + 33 — 151y 1) exp(-i wR/ B) (LIRY)

+ (3K + 3y 0k + 3T — 151y 1) exp(-i wRI B) (LIRP) (il B)

+ (1O + ik + 21T — BV Y ) exp(=i wR/ B) (LIRP) (i wl B)
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= (¥ %k — %iGy) expl-i wRIB) (LUR) (il B)°

Figure 3 shows the three component displacement, velocity and acceleration for a step-
like My, function. We se a permanent offset in displacement, which does not seem to be
as distinct as for a step-#ikoint force.

U, Y, U,
D I -
Vv
A

Fig. 3. Infinite medium response to a moment tensor force corresponding to a shear disloction &ith strik
45°, dip 45° and rak45°. actingat a location (14.14, 14.14, 0.0) from a source located at (0,0, 10). In the
figureU, is in the up-direction.

Using the same procedure as used for the point force, the static displacement field
due to a step change in the point source moment tensor elements is

Uk = Ok jj Mo
where
g O 1
ArrpQy i = 1%k + Y10k + W =3nY; K paRe
O O 1
~ 1%k +Vi0ik Vi ‘3yiVijDm

Note that the static displacementl$ of with distance a&/R?, which is faster than the
falloff for the step force solution.

The synthetic seismograrmf the Computer Programs in Seismology package were
developed to generate avdorms in the time domain for sources and rea@siin a plane
layered structure. For isotropic and transverse-isotropic media, the solutkpressed
in a cylindrical cooordinate systenThe cylindrical coordinate systein, ¢, z) and the
(X1, X5, X3) coordinate systems are related by the relations

Xy =TI COS¢
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X, =T Sing

X3=12

and the displacements are related by

(u, O Ocosep sing 000w O

- [L i O O
E]LJ‘”D 1 Sing Ccosg ODELJZD
M0 0O O 0 1pgmsp

In the cylindrical coordinate system, thigsplacements g, u,, u,) for an arbitrary

point force and moment tensor areegi by the following relations.

u,(r,z, h,w) = (F;cosp + F,sing)ZHF + F3ZVF

1ZSs ZDD | ZEX
+ e it i
My =5 cosdp -~ —¢ 3 O
TZSS ZDD | ZEX[,
+ i
Moo =~ cos— —¢ 3 0
DD ZEX
¥ M33523 * 50

+ My, %SSsin 2405

+ M3 %DS coswg

+ M23 %DS S|n§0g

u,(r,z h,w) =(F;cosg + F,sing RHF+ F3;RVF

RSS RDD = REX[

+ . -t —

M”D 2 cos P 6 3 0

TRSS RDD = REX

+ R -t —

MZZD 2 cos & 6 3 0
DD REX
" M33%R3 * 3 0

+ My ERDSCOS(OE
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+ MzggRDSsinq)g

Uyr, z,h,w) = (+F; sing - F, cosg) THF

TSS
+ My 5= sin 29

TSS .
+ Mzzg > sin 240%

+ My, ELTSScos 2/% (5.6.8¢)

+ M13 QVDS S|n¢g

[L O
+ .
M, . TDS cosqoD

In (5.6.8) the functionsZDD, RDD, eic., depend on the source and and recei
positions,h and z, respectiely, the cylindrical distance and angular frequegiaw. The
azimuthal dependence isvgn by the trigonometric terms wolving ¢. The indvidual
Greens functions are defined as integralerowvavenumber as follow:

ZDD = !’ Fy(K, ) Jo(kr)kdk (5.6.10a)

RDD = - J F(K, @) Jy(kr)kdk (5.6.10b)

ZDS= J Fa(k, w)Jy(kr)kdk (5.6.10c)

RDS= 1!’ Fa(K, @) Jo(kr)kdk (5.6.10d)
1 00

o J[H(k, w) + Fig(k, w)] J(kr)dk

TDS= !’ Faa(k, @) Jo(kr)kdk (5.6.10¢)
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00

- % ![F4(k, w) + Fa(k, w)] Jy(kr)dk

[oe)

7SS= ! Fs(K, @) Jo(kr)kdk

00

RSS= !’ Fe(K, w)Jy(kr)kdk
- % z!’[Fe(k, w) + Frik, )] Io(kr)dk
TSS= J F1u(K, @) Jy(kr)kdk

- ? z!’[Fe(k, w) + Fik, o)] Jp(kr)dk

[oe)

ZEX = J F(K, @) Jo(kr)kdk

REX=- 4’ Fa(k, @) Jy(kr)kdk

[oe)

ZVF = !’ Fo(K, w)Jo(kr)kdk

00

RVF =- z[ Fyo(K, @) Jy(kr)kdk

[oe)

ZHF = ! Fua(K, @) Jy(kr)kdk

00

RHF = 7!’ Fio(K, @) Jo(kr)kdk

- % {[Flz(k’ w) + Fis(k, @)] Ji(kr)dk
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00

THF = z!’ Fis(K, w)Jo(kr)kdk

- % ![Flz(k, w) + Fig(K, w)] Ji(kr)dk

The integrands for the isotropic wholespace problem are

Fi(k, w) = - W[(Zki -3k?)e 12l +3Kk%evs12l] sgn(2)
2 > ~VqlZ2| vzl
Fo(k, w) = W[(Zka - 3k?) ” +3vze”"" ]
vlel (g2 2y &
Fa(k, w) = W[Zvae a4l = (2k” - kj) » ]
1 - .
Fak, w) = _W[Zkze al2l —(2k2—k%)e ¢171] sgn(2)
2
Folko )= e[ e S0
k k?
= - 1 @ vlz_ —vg|z|
= 1 2,-v, 2|
F7(k,w) - = W ka e a Sgr(z)
k -V
O g,
Fg(k C()) = —[V e_Valzl _k_2 e—vﬁ|z|]
’ 4rrp(iw)? ¢ Vg
= K -V, |z| -vglz|
Falko ) = = e & me T sur)
Fulk, ) = W[e'”ﬂ'z' ~e 17 sgn(z)
1 k? - N
Fia(k, w) = _W o e valZl —vge E|Z|]
Fia(k, w) = kﬁze_"ﬂIZI sgn(2)

4mp(i w)?
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k Kk
Fiuk w) = ———— L g7l (5.6.12n)
Arp(iw)? vy
1 K
Fis(k, w) = ———— £ @7l (5.6.120)
Arp(iw)? vy
where functiorsgn) is defined as
(D z<0
sgni) = %L 50"

3. The halfspace problem

The solution of the avepropagtion problem for a buried source and reeein a
uniform isotropic halfspace can be slwsing matrix solution of a boundary value prob-
lem or constructed in terms of intluausing componentso®et the framwork for the
solution, consider Figure 4. Figure 4a illustrates the wholespace problem just considered.
In this case the solution (5.6.12) consists of terms seeh’@s" and e## ™M which
indicate P- and S-awesignals that hae propagted the vertical distan¢ze— h|. The other
terms in (5.6.12) represent the source excitation and radiation pattern.

Figure 4b conceptually represents the SH-problem when a frescesud intro-
duced. In addition to the directawethere will be reflected SHavewhich travels a total
vertical distance ofz+ h. In addition to a different radiation term from the source the
reflection coefficient at the free surface must be considered. Finally Figure 4c considers
the P-SV problem for which the observed signal wiltehloth P- and SVcomponents,
and the P- and S\&ignals indicent on the free sade can be caerrted on reflection to
the other vavetype. In this case the observedwdield will have 6 erms.

(@ (b)
sS /
P.,S
S )

Fig. 4. Ray diagrams for avepropagtion. (a) wholespace problem; (b) halfspace SH problem; (c) halfs-
pace P-SV problem.

After careful work, the expressions in the grems of (5.6.10) obtained. These
equations are written such that direa@wsterm of (5.6.12) can be readily identified.

1 Dk2-3k?g _,
= — [3 —€
4rrp(i w)>? O VY« U

F1 AP, + e (MR PY + €77 RpgS? g
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The free surface P-SV reflection coefficients are

(v —1)2 + yzl/o,vﬁ/k2

Rpp=-
PP Fr
2y(y —1)v,/k
Rps=- T E.
R
2y(y —Lvglk
RSP:_ F—
R
(v -1 + yzvavﬁlk2
Rss=-
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wherey = 2k?/k5 andFg=(y = 1) = y?v, v 4/K>.
The free surface reflection coefficient for SH is simply
Rshsh=1.

The cowersion of a vavetype to vector displacement issgn by the termsPg = k, P2 is
Vg, Pz =-sgnz-h)v,, S; =k andSgp = -vz andSg = —sgn(z - h)v,.
Motion at the top of the halfspace.

The motion at the top of the halfspace is obtained by setting theeredepth to
z=0in the expression abe  give the following expressions:

2 2 2 —y_h —y,h[]
= - - a4+ B
= yE R gzka 3k3)(y —1)e 3yvavee
S - %218 ~3Kk2)y ~£ &M+ 3k(y ~1)v, "0
Amp(iw)?Fr O k A 0
3 =— M %_Vah —_ e_VﬁhD
4rrp(iw)?Fg O
2
F,=— : e—v,,h_kZ _12e—vﬁh|]
7 Amp(iw)2Fgr %W” Ve s -1 O

2

Fo=— < L2, —1yeveh - e"’ﬁhD
5 4ﬂp(iw)2FR%<(y ) YaVp O

_ 2kvg
®” Amp(iw)2Fg

— _2k§(y_1) _Vah
" Anp(iw)2Fg

—v,h _ ., _ -vsh[d
%e (v-1e 5

2yk§vp

— _Vah
4rrp(i w)?kFg
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_ 2v,
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7 4np(iw)2Fg %y ) 4

U
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2
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4ro(iw)2F r %(y ) YWay

F
n 0
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Fio = ——& e_Vah_ -1 e_V;;hD
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2
Fon= _Zkﬁ —vgh
B 4mp(i w)?
— Zkk,% —vh
7 Amp(i w)2v 5
2
Fis= Zkﬁ ~vsh
Arp(iw)’vg

To derive these simpler relations we used the relations
P +Rpp P2 + Rps S2 == 2(y —1)v,/FR

PR+ Rpp PR + Rps SR == 2yv,v4/kFg
S; + Rsp P2 + RssSP == 2yv,v4/kFg
Sk +RspPR +RssSR =~ 2(y —1)v,4/Fgr

Figures 5 and 6 present the response to a point force and point moment tensor
source, respeetely, for a buried source and reegi at the surface of the halfspac&he
dustinguishing feature of the time series is the greater caitypldue to an arval
between P and S on the verttical and radial components, which is due toaae |Saw-
ing the source upward and then refracted as P along the surface. There is also the
Rayleigh vaveonn these components.
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Fig. 5. Halfspace medium response to a point force ixtld@ection at a location (14.14 14.14 0.0) from a
source located at (0,0, 5). In the figukgis in the up-direction.

NI
)
Ao

Fig. 6. Halfspace response to a moment tensor force corresponding to a shear disloction evida°strik
dip 45° and ra& 456°. actingat a location (14.14, 14.14, 0.0) from a source located at (0,0, 5). In the figure
U, is in the up-direction.
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4. Isotropic Static Displacement

To devdop the framwork for determining the static deformation in a layered
media, we must dem the solution for the wholespace and halfspace first in the
wavenumber domain so that we can test thev@wumber integrands dead for the lay-
ered medium problem. In addition we also need the solution in the spatial domain to test
the numerical @wvenumber intgration used in the general problem. For a step function in
force or moment, we need to consider the limit of the integrands in (5.6.42).&3.

The determination of the limits must be carefully done. The of terms in the inte-
grands seen in (5.6.12) as— 0 ae as follow:

e—VRZ—_E)ZTVZH . e—kH (1 + Ha)2/2k\/2)

4.1 Wholespace solution

After carefully expanding the terms in (5.6.12) and taking the limit, one obtains
the following terms wher€ ; = Iir_n0 Fi(k, w):

1 DZ K
. [
Fl' 471_'0 |j7 | | |:b’2 ,BZ [%Sgr(Z)e
0
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01 1 1 1 1
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4 Epy)
npDG

w2 R0 2 g

151

T~ n ﬂzme isgr(z)
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4-Hd<l

K w2201 10

Fs: — —
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E - 1 _klzlEk|z| N1 1 O, 101 1
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F: e Mlsgn(2)
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1

S oK
8 4mpa2
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2t ok 22 2 PO 2 Py
Fis: —%ﬂﬁze‘m‘sgr(z)

Fis: - 47;; B2 e_km%

Fis: O

When used together with the (5.6.19), the discontinuities in the transformed stress
displacement lead to the following source representatiamigi Table 5.X.

Table 5.X/Source Term Coefficients - Isotropic Medium

Term AU, AU, AT, AT, AU, AT, n
1 k 31+2
DD o - - oo 0 0
(A +2u) 2m A+2u
1 1
DS — 0 0 0 -— 0 1
2mu 2y
k k
SS 0 0 0 -— 0 — 2
L ‘ 2 2
U
EX 0 e 0 — 0 0 0
2m(A +24) TA+2u
1
VF 0 0 - — 0 0 0
o 1 1
HF 0 0 0 -— 0 — 1
2 2

Here we usea® = A +2u andpp® = p.

After placing these expressions into (5.6.10) avaluating the vavenumebr inte-
grals using the expressions in Section 2 of the Appendix, we obtain theirfgllalge-
braic expressions for the static deformation in a wholespace.
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4.2 Halfspace solution

The required lo-frequeng limit of the surface expressionsveite folloving
terms for the sudce deformation due to a buried source with a stepdkrce time
function.
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The expressions fdf; throughFg agree with those of Herrmann and Wang (1985) once
one accounts for differences in the direction of pesitietical displacementand the
form of integration for the vertical component. The contributions leading to the point
force response gen by Fq, Fy, F11, F1o, &€ a nev contribution.

We db not present closed form solutions for the ZDD, etc., but rathee lieto the
reader to place thesgmressions into (5.6.10) and then to use the Bessel integnase
sions gven in A.2. We do rote that at the top of the halfspat®S= 0.

5. Isotropic equations of motion, eigevelues and eigewectors

Fdlowing Zhu and Riera (2002), we will formulate the static problem in layered
media first for isotropic media and then transverse isotropic meediaillétart with the
homogeneous equations of motion (5.6.20pas 0.

5.1 SH Problem:
The system of differential equations to be solved is

d EUwE]FBO 1/uBEU¢B
a5 2
Az e pHk O Ol
The displacement-stress vecBir) is given by
B=EAK

where
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and

and the propagator matrix relating the displacement-stezdsrg from the top to the bot-
tom of a layer with thicknessis

U coshkz  sinhkz/ pk U

A=ENE’=
B,uk sinhkz  coshkz E
which we recognize as tH'ﬂ!n0 of (7.3.3)

5.2 P-SV Problem:
The system of differential equations to be solved is

0 10
0 -k 0 —

MUr O B KA 1 /JB[prD
EELTJZEFD A+2u A+2u ODEUTZS
dz o7 5 B , 0 0 0 kBD z ]

+ [—
0T O 2KuA+n) N BN
0 A+2u A+2u 0

The decompositioB = EAK is complicated since the eigatues of this matrix aré, K,
—k and-k and thex matrix is no longer diagonal ofowing the deelopment of Zhu and
Rivera (2002) the decomposition for the systemvalis

g kzeé? 0 0 [
= Do € o 0o O
e 0 €% kze® B

0o o 0 e
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and
k k
e e
0 At H AYH 5
il _k/]+2,u K _ /\+2/,1D
E=U At Atu QO
E?,ukz —2uk? 2uk? 2 uk? B
0 0
2uk? 0 —2uk? 0 O
0 0

Note that since the eigesctor matrix A is not diagonal, the second column Bfis
related to the first column, so that one must not multiply one of the columns by a scalar
without applying the same multiplication to the other colurfhis also applies to the

third and fourth columns. Note also that this differs from Zhu andr&®i(2002) in that

all occurrences of here appear in combination wikh e.g., askzto presere the dimen-

sion of the matrix.

The required iverse of the eigarector matrix is

Dl 0 1 A+2u [

0 2k(A + )  2uk(A+p) U

U 1 1 0

1 4 -— — 0

a_ AtE g 2uk 2uk 0
2k(A +2u) Dl 0 1 _ A+2u O

. KA+ 4 2uk(A+p) o

(K - — i 0

B 2uk 2uk B

The elements of the propagator ma&ixE ™ are:

A+ u _OA+u s M O

a=C+ Sk = S
1 A+2u A2 N +2u A+2u U
A+u 1 1 M+3u A+ u 0
Qa=— —— Sk = S+ Ckz
BT ) +2u 2uk A4 2uk h +2u A+2u U
A+ u
= - +(A+ kz =C - kz
ax )l+2,u( uS+(A+ 1)C ko) a»=C /\+2,uS
_A+tp 1 A+3u O _
6123_/\+2,u 2uk OA + S CkZD 4= a3
= ATH 5 kS kz ag= 2 2 k(S-C k)
331—/]+21u H 32_)I+2,u H
33 = A2 Ay =" ap
A H S K(S+C k) ——a
a41_A+2,u H Agpp=—4ag
3=~ an Ay =2y

where hereéC =coshkz, S=sinhkz Note that the propagator matrix elements can also be
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obtained by applyincjjm0 to the expression gen in 87.15 (Zhu and Riera, 2002).

For
Ay = A”} !

= gk Q|
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completeness, the compound matrix
- g ay with ij =(1213,14,23,2,34) for | =(1,2,3,4), respectiely.

elements

are

defined

The kl are similarly defined in terms df. The elements of the compound matAxare
just sub-determinants of tleematrix. The terms are as follow:

A= Ao+ (11— Ag)

2:

Ajz=

App=-

A=~

A=

Ay =2uk At
21_'UA+2

Ay =

A+ 1 h+3 l

H E; 'USC—kzD
A+2,L12,ukD/\+/.1 0

o B 43S (4 + K7D
A+2u A+2u 2uk

A3

1 1

A+ A+ )k
A +20 24 5k (Y F30SC- (0 + kg

1 1
(A +2up (2uk)? O

U
SC-kz
A,( )

C2

= +2 %/SC‘F(A + ,u)kz

Pog=— Ay

Aps=-S

Agg=

Ag1 =2 k2 E

Agr=

A33 =1+

Ass

tHO K o ATH ean
A+2u D«\+2,u A+2u B

_ 0
S+ 20 %/CS (1 + pkes

O u ﬁ DA'*'/J ﬁkzzz
[H+2/JD M +2u0

Ags=1- Ag3
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Ass= A3

A+
Ay =—2uk 2 (sC+k2)
A+2u

Aa=- 20k “”ﬁ% @20

A+2ul]

Ags= Ay

Aes = A
There are a number of important features of this matrix:
Agj=-Ay, |23,4

Ai3: _Ai4’ j¢3’4
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Agz = Aug s

Ags = Apz=1-Ap=1-Ag3

In 87.4, we noted that the boundary condition forwelohalfspace requires the
matrixG = E and that for the upper halfspace requies E. When using the compund
matrix formulation, we require the following elements:

ﬁ 0 A+ u E]Z A+2u

B U A+ u ﬁ 1 _D A+ u DZ 1
Gﬁg"_%k(/\ + )0 2K+ 4) Ghs= k(1 +2) 5 2K(A + )

O a+u f A+2u O a+u f A+3u
GBy= 2k +240) 1) 2uk(A + 4) G = 2k +20) 5 A2 + 1)

Hg=-1e AT e et
2 A+ 12 A+
2 2
Hig=-2-—  HE=21 L
H A+u
A+2u
H24:2 k3— H34:4 2k4
2 =M A+ 12 =4aH

The use of the matrices in the computation of the medium response is discussed in
Chapter 7.
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Wavenumber integration

The evaluation of the vavenumber intgrals requires care. Numericalakiation
introduces error through the finite igtation limits and through the particular igtation
rule used. Items of concern are the infinite limit of gnétion in vavenumbey the sam-
ple interval and the integration scheme used.

Infinite Limits

The problem is to approximate the infinite g by a finite one. The eus
approach is to truncate the integral so that

kmax

:!’o f(k, r)dk = z!’ f (k, r)dk,

but now the choice ofk,,, becomes important, especially when the functigk,r) is
significantly different from zero fdk > Koy

To illustrate this, consider tHeEX function for an elastic wholespace:

1

pr— e M2, (kr)kdk

00
REX=t!'

1 9F
4rrpa? or

1 gOrQ
4rrpa? OR2 [

kmax

- g 4rpa?
whereR?=r? + 7.

Since this integral must bevauated numericallythere are seral problems to be
faced. The most atious is the choice df,,. If One malesk,,44z| large, then the error
due to theintegration in the rangikm., 0] is presumably small because the integrand is
neggligible. A problem arises whejza| is anall. The requiredk,,ox Will be large and the
numerical integration will imolve more steps, each of which can contribute a rounding
error.

To control the error due to the choicelgf,,, assume that a functiog(k, r) exists
(ee]

e ¥4, (kr)kdk + Error

such thag(k, r)= f(k,r) ask - oo, and that{ g(k,r)dk = G(r). Thus

1!’ f(k,r)dk= 1!’ E‘f (k,r)—g(k, r)gdk+ G(r)
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kmax

= J = (k. 1)~ g(k, 1) Hdk+ G(r)
wherekax IS such that no the integral

°° _ 0
kI E‘f(k,r) g(k.r) ok

max

is ngligible. Sincethe integrand her%f(k, r)-gck, r)gis designed to be less than the

original integrand f (k, r) we haveensured that the truncation error introduced by the use
of Kiax Will be much smaller.

The next step is to approximate the gned numerically The current approach is to
use a simple rectangular integration rule:

> .- gk Ak +G()

=N

i’of(k,r)dkzi

wherek; =(i - %)Ak. The order of the summation loop is expressed tlag t@ reduce
roundof error by adding small terms firsfThe current procedure definé, Ak and
three vavenumbersk;, k, andk; as follows:

|| <r
r>0
Ak = (LB)27lr
Kmax = 942
NK = Ko/ K
r=0
Kmax = 942
NK =100
AK = K/ NK
ky =317
ko =6/
ks =812
lz| =
Ak =64 2nlr
Kmax = 9 (2r/r
NK = Kna/AK
k]_ =0. 3(max
k2 =0. 6kmax
k3 =0. 8‘(max

To illustrate the way that an asymptotic solution of formed, consider the integral
J F(k)J,(kr)dk

and
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00

1!’(A + Bk + Ck%)e kg, (kr)dk

The latter hasn analytic solution gen in A.2, which we define G(r). Thus the first
integral is nav written as

[0¢]
[e¢] [oe]

1!’ F(k)J(kr)dk = J[F(k) —(A+ Bk+Ck?)e™ Mg (kr)dk + G(r)
0

The polynomial coefficients are determined by solving the equations
(A+Bk; +CKe™M=F(k;) forj=1,23

There is nothing special about using a rectangular rule. The implementation of an
adaptve method of integration may be worthvastigating.
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Appendix
A.1l. Moment tensor for a shear dislocation

Consider the fault plane slwan Figure A.1, whose parameters are defined by the
strike, dip and ra&k angles.

For a shear dislocation in an isotropic medium, the moment tensor elements are

My; == Mq(Sind cosA sin 2p; + sin 25 sinA sir? ¢;)
Mi2= Mo(sing cosA cos ¢ + 3 sin 25 sinA sin 2p;)
Mi3=— Mg(COSJ COSA COS@; +COS D SiNA Singy)
My, = My(Sind cosA sin 2p; — sin 25 sinA cos ¢s)
My3=— Mg(C0Sd COSA Sing; — COS D SinA COS;)

Ms3z=Mgsin 2 sinA
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Fig. A.1. Fault plane angle cemntion. Thex;, X, and x; axes are in the north, east and down directions.

phif is the strike, measured northjs the dip, measured doward from a horizontal direction perpendic-
ular to the strik, and/ is the rale angle indicating the direction of motion on the faulyegi by the vector

s. The side of the fault nearest the viewer willvadn thes direction.
Mz = My3
M3z =Mps
My =My,

A.2. Bessel function integrals

To corvert the expressions for the static solution in ttev@aumber domain to the
sparial domain, we use the following integrals of the Bessel functions:

* 1
F= ! e 4 Jy(kr)dk = 2

_ aF _ * _klzl _ V4
37" sgr(z)! ke 4 Jy(kr)dk =
oF % r

—_ = Y |Z| -
= !ke Jy(kr)dk
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62 2 —k|Z| 3FZ
s sgr(z)t[k Jy(kr)dk= "¢

F _% 5 _BZ_10
—Z—Jk e Jo(kr)dk—DE ED

GZF _k 0, _[8re _1g
gr Iz _z
=7 Jke S(J (kr) Jl(kr) dk= e — =51

03 * 2K a5 o g
z!’k %Jl(kr) —Jz(k) k= - 2

3

%TF:—sgr(z)gW e X4 3y(kr) dk_—g—zf —%g

oF 5r2z 3z

= =S1(2) !kz klzlgo (kr)——Jl(k) Cik= -=

oF * 36-K12 1572 3r

e L

Note that these reltions also falldrom 85.9 in the limit agw - O.
The following integrals are tak fromHarkrider and Helmberger (1978):

[oe)

Je—klzl K3y (krydk= """

0 2
J ekl J(kr)dk= 1 (R r2|Z|)

1!’e—klzlJn(k yak=1 R0

RO r 0O

We @an summarize these results in a table. For example, factorisgn{® in the
second equation leads to

€ ki _d
Jke Jo(kr)dk= 5

For the static problem, the avenumber integrals are of the form
[00]

JnKm= z[ e k23 (kr)k™dk and are explicitly gien in Table 1.
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Table 1. Wavenumber integrals

n HhKm n m
1 |z|
< > _g
0 R 0 R R2D
|Z] 1 |Z| IZI3
- 2 1 _
0 R3 r2 3R RO
_ 2 2
0 @Z-r) |, 3
RS RS
r(R+[z])
1 I
R
L r
R3
3r|z|
1 !
RS

whereR=rZ+ 22
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