2013/05/22 17:19:39 35.299 -92.715 2.0 3.00
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.43e+20 dyne-cm Mw = 3.09 Z = 2 km Plane Strike Dip Rake NP1 275 80 40 NP2 177 51 167 Principal Axes: Axis Value Plunge Azimuth T 5.43e+20 35 144 N 0.00e+00 49 287 P -5.43e+20 19 40 Moment Tensor: (dyne-cm) Component Value Mxx -4.74e+19 Mxy -4.14e+20 Mxz -3.33e+20 Myy -7.21e+19 Myz 4.34e+19 Mzz 1.19e+20 ####---------- ######---------------- ########--------------- -- ########---------------- P --- #########----------------- ----- #########--------------------------- ##########---------------------------- ###########----------------------------- ##########------------------------------ #######----#######------------------------ -----------######################--------- -----------############################--- -----------############################### -----------############################# -----------############################# -----------############## ########## ----------############## T ######### ----------############# ######## ---------##################### ---------################### --------############## ------######## Global CMT Convention Moment Tensor: R T P 1.19e+20 -3.33e+20 -4.34e+19 -3.33e+20 -4.74e+19 4.14e+20 -4.34e+19 4.14e+20 -7.21e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
STK = 275 DIP = 80 RAKE = 40 MW = 3.09 HS = 2.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.43e+20 dyne-cm Mw = 3.09 Z = 2 km Plane Strike Dip Rake NP1 275 80 40 NP2 177 51 167 Principal Axes: Axis Value Plunge Azimuth T 5.43e+20 35 144 N 0.00e+00 49 287 P -5.43e+20 19 40 Moment Tensor: (dyne-cm) Component Value Mxx -4.74e+19 Mxy -4.14e+20 Mxz -3.33e+20 Myy -7.21e+19 Myz 4.34e+19 Mzz 1.19e+20 ####---------- ######---------------- ########--------------- -- ########---------------- P --- #########----------------- ----- #########--------------------------- ##########---------------------------- ###########----------------------------- ##########------------------------------ #######----#######------------------------ -----------######################--------- -----------############################--- -----------############################### -----------############################# -----------############################# -----------############## ########## ----------############## T ######### ----------############# ######## ---------##################### ---------################### --------############## ------######## Global CMT Convention Moment Tensor: R T P 1.19e+20 -3.33e+20 -4.34e+19 -3.33e+20 -4.74e+19 4.14e+20 -4.34e+19 4.14e+20 -7.21e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 275 55 20 3.04 0.0625 WVFGRD96 1.0 275 60 25 3.06 0.0637 WVFGRD96 2.0 275 80 40 3.09 0.0639 WVFGRD96 3.0 90 80 -30 3.08 0.0635 WVFGRD96 4.0 90 80 -30 3.08 0.0631 WVFGRD96 5.0 90 85 -30 3.09 0.0625 WVFGRD96 6.0 95 90 -30 3.09 0.0626 WVFGRD96 7.0 265 70 -35 3.09 0.0626 WVFGRD96 8.0 265 70 -35 3.10 0.0631 WVFGRD96 9.0 265 65 -35 3.11 0.0635 WVFGRD96 10.0 265 65 -35 3.13 0.0635 WVFGRD96 11.0 265 65 -35 3.14 0.0637 WVFGRD96 12.0 265 65 -35 3.14 0.0636 WVFGRD96 13.0 265 65 -35 3.15 0.0634 WVFGRD96 14.0 265 65 -35 3.16 0.0628 WVFGRD96 15.0 265 65 -35 3.16 0.0622 WVFGRD96 16.0 105 65 40 3.16 0.0614 WVFGRD96 17.0 105 65 40 3.17 0.0609 WVFGRD96 18.0 105 65 40 3.18 0.0604 WVFGRD96 19.0 105 65 40 3.19 0.0599 WVFGRD96 20.0 105 65 45 3.21 0.0594 WVFGRD96 21.0 110 65 50 3.22 0.0588 WVFGRD96 22.0 110 65 50 3.23 0.0582 WVFGRD96 23.0 110 65 50 3.23 0.0575 WVFGRD96 24.0 110 60 50 3.24 0.0567 WVFGRD96 25.0 155 55 -40 3.28 0.0564 WVFGRD96 26.0 160 50 -55 3.30 0.0564 WVFGRD96 27.0 160 50 -55 3.31 0.0560 WVFGRD96 28.0 160 50 -55 3.31 0.0553 WVFGRD96 29.0 300 55 60 3.32 0.0550 WVFGRD96 30.0 300 55 60 3.33 0.0547 WVFGRD96 31.0 300 55 60 3.33 0.0542 WVFGRD96 32.0 295 60 50 3.33 0.0536 WVFGRD96 33.0 295 55 50 3.34 0.0531 WVFGRD96 34.0 295 55 50 3.34 0.0526 WVFGRD96 35.0 295 55 50 3.35 0.0520 WVFGRD96 36.0 290 55 45 3.35 0.0514 WVFGRD96 37.0 290 55 45 3.36 0.0507 WVFGRD96 38.0 290 55 45 3.37 0.0497 WVFGRD96 39.0 285 55 35 3.37 0.0491 WVFGRD96 40.0 280 45 30 3.42 0.0470 WVFGRD96 41.0 275 50 -30 3.39 0.0464 WVFGRD96 42.0 275 55 -30 3.40 0.0465 WVFGRD96 43.0 275 55 -30 3.40 0.0464 WVFGRD96 44.0 275 55 -30 3.41 0.0462 WVFGRD96 45.0 275 55 -30 3.42 0.0460 WVFGRD96 46.0 275 55 -30 3.43 0.0456 WVFGRD96 47.0 275 55 -30 3.43 0.0454 WVFGRD96 48.0 275 55 -30 3.44 0.0452 WVFGRD96 49.0 275 55 -35 3.44 0.0451
The best solution is
WVFGRD96 2.0 275 80 40 3.09 0.0639
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: