2013/05/22 17:19:39 35.299 -92.715 2.0 3.00
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.67e+20 dyne-cm Mw = 3.19 Z = 8 km Plane Strike Dip Rake NP1 130 60 45 NP2 13 52 141 Principal Axes: Axis Value Plunge Azimuth T 7.67e+20 52 346 N 0.00e+00 38 157 P -7.67e+20 5 250 Moment Tensor: (dyne-cm) Component Value Mxx 1.87e+20 Mxy -3.13e+20 Mxz 3.82e+20 Myy -6.57e+20 Myz -3.34e+19 Mzz 4.70e+20 #############- ##################---- ######################------ ########################------ -############ ##########-------- --############ T ###########-------- ----########### ###########--------- ------########################---------- -------#######################---------- ---------######################----------- ----------#####################----------- -----------####################----------- -------------#################------------ -----------###############----------- P -------------############------------ ---------------#########------------ -------------------#####------------ ----------------------#----------- -------------------########### ----------------############ -----------########### ----########## Global CMT Convention Moment Tensor: R T P 4.70e+20 3.82e+20 3.34e+19 3.82e+20 1.87e+20 3.13e+20 3.34e+19 3.13e+20 -6.57e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
STK = 130 DIP = 60 RAKE = 45 MW = 3.19 HS = 8.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.67e+20 dyne-cm Mw = 3.19 Z = 8 km Plane Strike Dip Rake NP1 130 60 45 NP2 13 52 141 Principal Axes: Axis Value Plunge Azimuth T 7.67e+20 52 346 N 0.00e+00 38 157 P -7.67e+20 5 250 Moment Tensor: (dyne-cm) Component Value Mxx 1.87e+20 Mxy -3.13e+20 Mxz 3.82e+20 Myy -6.57e+20 Myz -3.34e+19 Mzz 4.70e+20 #############- ##################---- ######################------ ########################------ -############ ##########-------- --############ T ###########-------- ----########### ###########--------- ------########################---------- -------#######################---------- ---------######################----------- ----------#####################----------- -----------####################----------- -------------#################------------ -----------###############----------- P -------------############------------ ---------------#########------------ -------------------#####------------ ----------------------#----------- -------------------########### ----------------############ -----------########### ----########## Global CMT Convention Moment Tensor: R T P 4.70e+20 3.82e+20 3.34e+19 3.82e+20 1.87e+20 3.13e+20 3.34e+19 3.13e+20 -6.57e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 275 30 -45 3.12 0.0302 WVFGRD96 1.0 275 30 -45 3.17 0.0318 WVFGRD96 2.0 300 45 -45 3.20 0.0344 WVFGRD96 3.0 280 55 -50 3.20 0.0334 WVFGRD96 4.0 65 60 -95 3.22 0.0335 WVFGRD96 5.0 130 60 50 3.18 0.0352 WVFGRD96 6.0 130 55 50 3.19 0.0369 WVFGRD96 7.0 130 60 45 3.19 0.0378 WVFGRD96 8.0 130 60 45 3.19 0.0379 WVFGRD96 9.0 130 60 45 3.19 0.0377 WVFGRD96 10.0 125 65 45 3.21 0.0370 WVFGRD96 11.0 125 65 45 3.21 0.0365 WVFGRD96 12.0 175 45 25 3.23 0.0360 WVFGRD96 13.0 175 45 20 3.23 0.0356 WVFGRD96 14.0 165 45 0 3.23 0.0352 WVFGRD96 15.0 160 50 -10 3.25 0.0348 WVFGRD96 16.0 165 45 -30 3.25 0.0345 WVFGRD96 17.0 165 45 -30 3.26 0.0342 WVFGRD96 18.0 165 45 -35 3.27 0.0338 WVFGRD96 19.0 155 45 -40 3.28 0.0336 WVFGRD96 20.0 150 45 -40 3.31 0.0333 WVFGRD96 21.0 150 45 -40 3.32 0.0331 WVFGRD96 22.0 150 45 -40 3.32 0.0326 WVFGRD96 23.0 150 45 -40 3.33 0.0319 WVFGRD96 24.0 150 45 -40 3.34 0.0312 WVFGRD96 25.0 135 40 -40 3.35 0.0307 WVFGRD96 26.0 275 35 55 3.37 0.0309 WVFGRD96 27.0 275 35 50 3.38 0.0309 WVFGRD96 28.0 275 35 50 3.39 0.0309 WVFGRD96 29.0 275 35 50 3.39 0.0306 WVFGRD96 30.0 275 35 50 3.40 0.0301 WVFGRD96 31.0 100 65 70 3.36 0.0297 WVFGRD96 32.0 100 65 70 3.36 0.0296 WVFGRD96 33.0 110 65 80 3.38 0.0293 WVFGRD96 34.0 110 65 85 3.39 0.0290 WVFGRD96 35.0 110 65 85 3.39 0.0285 WVFGRD96 36.0 210 50 50 3.40 0.0285 WVFGRD96 37.0 210 50 50 3.41 0.0287 WVFGRD96 38.0 210 50 50 3.42 0.0289 WVFGRD96 39.0 210 50 50 3.43 0.0290 WVFGRD96 40.0 295 30 90 3.52 0.0286 WVFGRD96 41.0 290 30 85 3.53 0.0283 WVFGRD96 42.0 285 30 75 3.54 0.0279 WVFGRD96 43.0 285 30 75 3.55 0.0276 WVFGRD96 44.0 285 30 75 3.55 0.0273 WVFGRD96 45.0 285 30 75 3.56 0.0270 WVFGRD96 46.0 325 45 -40 3.51 0.0270 WVFGRD96 47.0 325 45 -40 3.52 0.0273 WVFGRD96 48.0 325 45 -40 3.52 0.0275 WVFGRD96 49.0 325 45 -40 3.53 0.0277
The best solution is
WVFGRD96 8.0 130 60 45 3.19 0.0379
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: