2013/05/22 17:19:39 35.299 -92.715 2.0 3.38
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.4 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.53e+21 dyne-cm Mw = 3.39 Z = 2 km Plane Strike Dip Rake NP1 182 71 -159 NP2 85 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.53e+21 1 313 N 0.00e+00 62 222 P -1.53e+21 28 44 Moment Tensor: (dyne-cm) Component Value Mxx 9.93e+19 Mxy -1.36e+21 Mxz -4.43e+20 Myy 2.37e+20 Myz -4.55e+20 Mzz -3.37e+20 #######------- ##########------------ ###########---------------- T ##########------------------ # ##########------------ ----- ##############------------- P ------ ###############------------- ------- ################------------------------ ################------------------------ ################-------------------------- ################-------------------------# ################----------------------#### --##############-----------------######### -------########---------################ ---------------######################### ---------------####################### --------------###################### -------------##################### -----------################### -----------################# ---------############# -----######### Global CMT Convention Moment Tensor: R T P -3.37e+20 -4.43e+20 4.55e+20 -4.43e+20 9.93e+19 1.36e+21 4.55e+20 1.36e+21 2.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
STK = 85 DIP = 70 RAKE = -20 MW = 3.39 HS = 2.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 3.4 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.53e+21 dyne-cm Mw = 3.39 Z = 2 km Plane Strike Dip Rake NP1 182 71 -159 NP2 85 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.53e+21 1 313 N 0.00e+00 62 222 P -1.53e+21 28 44 Moment Tensor: (dyne-cm) Component Value Mxx 9.93e+19 Mxy -1.36e+21 Mxz -4.43e+20 Myy 2.37e+20 Myz -4.55e+20 Mzz -3.37e+20 #######------- ##########------------ ###########---------------- T ##########------------------ # ##########------------ ----- ##############------------- P ------ ###############------------- ------- ################------------------------ ################------------------------ ################-------------------------- ################-------------------------# ################----------------------#### --##############-----------------######### -------########---------################ ---------------######################### ---------------####################### --------------###################### -------------##################### -----------################### -----------################# ---------############# -----######### Global CMT Convention Moment Tensor: R T P -3.37e+20 -4.43e+20 4.55e+20 -4.43e+20 9.93e+19 1.36e+21 4.55e+20 1.36e+21 2.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 90 65 0 3.32 0.3627 WVFGRD96 1.0 90 65 0 3.35 0.3732 WVFGRD96 2.0 85 70 -20 3.39 0.3885 WVFGRD96 3.0 85 75 -15 3.39 0.3786 WVFGRD96 4.0 85 75 -15 3.40 0.3616 WVFGRD96 5.0 270 75 10 3.40 0.3456 WVFGRD96 6.0 270 75 10 3.40 0.3396 WVFGRD96 7.0 270 75 10 3.41 0.3330 WVFGRD96 8.0 270 75 10 3.41 0.3264 WVFGRD96 9.0 270 75 10 3.42 0.3197 WVFGRD96 10.0 270 70 10 3.43 0.3136 WVFGRD96 11.0 270 70 10 3.44 0.3080 WVFGRD96 12.0 270 70 10 3.45 0.3027 WVFGRD96 13.0 270 70 10 3.45 0.2979 WVFGRD96 14.0 270 70 10 3.46 0.2936 WVFGRD96 15.0 270 70 10 3.46 0.2902 WVFGRD96 16.0 270 70 10 3.47 0.2874 WVFGRD96 17.0 270 70 10 3.48 0.2848 WVFGRD96 18.0 270 70 10 3.49 0.2824 WVFGRD96 19.0 270 70 10 3.49 0.2802 WVFGRD96 20.0 270 65 10 3.51 0.2782 WVFGRD96 21.0 270 65 10 3.52 0.2769 WVFGRD96 22.0 270 65 10 3.52 0.2760 WVFGRD96 23.0 270 60 10 3.53 0.2758 WVFGRD96 24.0 270 60 10 3.54 0.2761 WVFGRD96 25.0 270 60 10 3.55 0.2772 WVFGRD96 26.0 270 60 10 3.55 0.2783 WVFGRD96 27.0 270 60 5 3.56 0.2791 WVFGRD96 28.0 265 60 -10 3.56 0.2814 WVFGRD96 29.0 265 60 -10 3.56 0.2829 WVFGRD96 30.0 265 60 -10 3.57 0.2848 WVFGRD96 31.0 265 65 -10 3.57 0.2859 WVFGRD96 32.0 265 65 -10 3.58 0.2867 WVFGRD96 33.0 265 65 -10 3.58 0.2866 WVFGRD96 34.0 265 65 -10 3.59 0.2858 WVFGRD96 35.0 265 70 -10 3.59 0.2846 WVFGRD96 36.0 265 70 -10 3.60 0.2826 WVFGRD96 37.0 265 70 -10 3.61 0.2804 WVFGRD96 38.0 265 70 -5 3.62 0.2783 WVFGRD96 39.0 265 70 -5 3.64 0.2774 WVFGRD96 40.0 265 60 -5 3.69 0.2771 WVFGRD96 41.0 265 60 -10 3.69 0.2739 WVFGRD96 42.0 265 60 -10 3.70 0.2711 WVFGRD96 43.0 265 65 -10 3.70 0.2680 WVFGRD96 44.0 260 60 -20 3.72 0.2645 WVFGRD96 45.0 260 60 -20 3.73 0.2617 WVFGRD96 46.0 260 60 -20 3.73 0.2583 WVFGRD96 47.0 260 60 -20 3.74 0.2558 WVFGRD96 48.0 90 80 -15 3.73 0.2550 WVFGRD96 49.0 90 80 -15 3.74 0.2534
The best solution is
WVFGRD96 2.0 85 70 -20 3.39 0.3885
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: