2013/05/22 17:19:39 35.299 -92.715 2.0 4.00
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 4.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 2 km Plane Strike Dip Rake NP1 182 71 -159 NP2 85 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 1 313 N 0.00e+00 62 222 P -1.26e+22 28 44 Moment Tensor: (dyne-cm) Component Value Mxx 8.16e+20 Mxy -1.12e+22 Mxz -3.64e+21 Myy 1.95e+21 Myz -3.74e+21 Mzz -2.77e+21 #######------- ##########------------ ###########---------------- T ##########------------------ # ##########------------ ----- ##############------------- P ------ ###############------------- ------- ################------------------------ ################------------------------ ################-------------------------- ################-------------------------# ################----------------------#### --##############-----------------######### -------########---------################ ---------------######################### ---------------####################### --------------###################### -------------##################### -----------################### -----------################# ---------############# -----######### Global CMT Convention Moment Tensor: R T P -2.77e+21 -3.64e+21 3.74e+21 -3.64e+21 8.16e+20 1.12e+22 3.74e+21 1.12e+22 1.95e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
STK = 85 DIP = 70 RAKE = -20 MW = 4.00 HS = 2.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/05/22 17:19:39:0 35.30 -92.71 2.0 4.0 Stations used: Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 2 km Plane Strike Dip Rake NP1 182 71 -159 NP2 85 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 1 313 N 0.00e+00 62 222 P -1.26e+22 28 44 Moment Tensor: (dyne-cm) Component Value Mxx 8.16e+20 Mxy -1.12e+22 Mxz -3.64e+21 Myy 1.95e+21 Myz -3.74e+21 Mzz -2.77e+21 #######------- ##########------------ ###########---------------- T ##########------------------ # ##########------------ ----- ##############------------- P ------ ###############------------- ------- ################------------------------ ################------------------------ ################-------------------------- ################-------------------------# ################----------------------#### --##############-----------------######### -------########---------################ ---------------######################### ---------------####################### --------------###################### -------------##################### -----------################### -----------################# ---------############# -----######### Global CMT Convention Moment Tensor: R T P -2.77e+21 -3.64e+21 3.74e+21 -3.64e+21 8.16e+20 1.12e+22 3.74e+21 1.12e+22 1.95e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 90 65 0 3.94 0.9013 WVFGRD96 1.0 85 60 -10 3.98 0.9353 WVFGRD96 2.0 85 70 -20 4.00 0.9777 WVFGRD96 3.0 85 70 -20 4.01 0.9525 WVFGRD96 4.0 85 75 -15 4.01 0.9103 WVFGRD96 5.0 90 80 -15 4.01 0.8679 WVFGRD96 6.0 270 85 15 4.01 0.8343 WVFGRD96 7.0 270 75 10 4.02 0.8204 WVFGRD96 8.0 270 75 10 4.03 0.8067 WVFGRD96 9.0 270 75 10 4.03 0.7949 WVFGRD96 10.0 270 75 15 4.05 0.7845 WVFGRD96 11.0 270 75 15 4.05 0.7712 WVFGRD96 12.0 270 75 15 4.06 0.7581 WVFGRD96 13.0 270 75 10 4.07 0.7469 WVFGRD96 14.0 270 75 10 4.07 0.7360 WVFGRD96 15.0 270 75 10 4.08 0.7269 WVFGRD96 16.0 270 75 10 4.08 0.7185 WVFGRD96 17.0 270 75 10 4.09 0.7094 WVFGRD96 18.0 270 75 10 4.10 0.7012 WVFGRD96 19.0 270 75 10 4.11 0.6938 WVFGRD96 20.0 270 70 10 4.12 0.6856 WVFGRD96 21.0 270 70 10 4.12 0.6764 WVFGRD96 22.0 270 70 10 4.13 0.6707 WVFGRD96 23.0 270 70 10 4.13 0.6662 WVFGRD96 24.0 270 75 10 4.14 0.6614 WVFGRD96 25.0 270 80 15 4.14 0.6646 WVFGRD96 26.0 270 75 5 4.14 0.6683 WVFGRD96 27.0 270 75 5 4.15 0.6718 WVFGRD96 28.0 270 80 15 4.16 0.6759 WVFGRD96 29.0 265 70 -10 4.16 0.6814 WVFGRD96 30.0 265 70 -10 4.17 0.6879 WVFGRD96 31.0 265 70 -10 4.17 0.6916 WVFGRD96 32.0 265 70 -10 4.18 0.6940 WVFGRD96 33.0 265 70 -10 4.18 0.6934 WVFGRD96 34.0 265 70 -10 4.19 0.6931 WVFGRD96 35.0 265 70 -10 4.20 0.6915 WVFGRD96 36.0 265 70 -10 4.21 0.6886 WVFGRD96 37.0 270 75 5 4.22 0.6854 WVFGRD96 38.0 265 70 -5 4.24 0.6835 WVFGRD96 39.0 265 70 -5 4.25 0.6809 WVFGRD96 40.0 265 65 -10 4.29 0.6794 WVFGRD96 41.0 265 65 -10 4.30 0.6732 WVFGRD96 42.0 265 65 -10 4.31 0.6668 WVFGRD96 43.0 265 65 -10 4.32 0.6602 WVFGRD96 44.0 265 65 -10 4.32 0.6526 WVFGRD96 45.0 265 65 -10 4.33 0.6457 WVFGRD96 46.0 265 65 -10 4.34 0.6385 WVFGRD96 47.0 265 65 -10 4.35 0.6323 WVFGRD96 48.0 265 65 -10 4.35 0.6263 WVFGRD96 49.0 265 65 -10 4.36 0.6220
The best solution is
WVFGRD96 2.0 85 70 -20 4.00 0.9777
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: