
1 Introduction

This note reviews expressions for the cylindrical coordinate solution of elastic wave propagation for models in which material

properties depend only the the z coordinate. The Fourier transform of the solution is developed in terms of wavenumber integrals

of Bessel functions, e.g., the Fourier-Bessel transforms. This overview will set the stage for understanding the numerical problems

associated with approximating these transforms.

For isotropic and transverse isotropic media in which the material properties only vary in the z-direction, the form of the

displacements in cylindrical coordinates can be expressed as

uz(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫ ∞

0

Uz(k, z, ω)Jn(kr)kdk

ur(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫ ∞

0

[

Ur(k, z, ω)
∂Jn(kr)

∂r
−

n

r
Uφ(k, z, ω)Jn(kr)

]

dk

uφ(r, z, ω) =
∑

n

(

An sin nφ − Bn cos nφ

)

·

∫ ∞

0

[

Uφ(k, z, ω)
∂Jn(kr)

∂r
−

n

r
Ur(k, z, ω)Jn(kr)

]

dk.

The Ur, Uφ and Uz are solutions are a differential equation in z. This explicitly shows the φ and r dependence.

The transformed stresses in isotropic media are defined as

Tr = µ

(

dUr

dz
+ kUz

)

Tz = (λ + 2µ)
dUz

dz
− kλUr

Tφ = µ
dUφ

dz

The transformed displacement and stress functions can be obtained using propagator or reflection matrices.

The Fourier transform of cylindrical coordinate displacements due to point force and moment tensor sources can be written in
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terms of basic Green’s functions as follows:

uz(r, z, h, ω) = (F1 cosφ + F2 sinφ) ZHF + F3ZVF

+ M11

[

ZS S

2
cos(2φ) −

ZDD

6
+

ZEX

3

]

+ M22

[

−ZS S

2
cos(2φ) −

ZDD

6
+

ZEX

3

]

+ M33

[

ZDD

3
+

ZEX

3

]

+ M12

[

ZS S sin(2φ)
]

+ M13

[

ZDS cos(φ)
]

+ M23

[

ZDS sin(φ)
]

ur(r, z, h, ω) = (F1 cosφ + F2 sinφ) RHF + F3RVF

+ M11

[

RS S

2
cos(2φ) −

RDD

6
+

REX

3

]

+ M22

[

−RS S

2
cos(2φ) −

RDD

6
+

REX

3

]

+ M33

[

RDD

3
+

REX

3

]

+ M12

[

RS S sin(2φ)
]

+ M13

[

RDS cos(φ)
]

+ M23

[

RDS sin(φ)
]

uφ(r, z, h, ω) = (F1 sinφ − F2 cosφ) T HF

+ M11

[

TS S

2
sin(2φ)

]

+ M22

[

−TS S

2
sin(2φ)

]

+ M12

[

−TS S cos(2φ)
]

+ M13

[

T DS sin(φ)
]

+ M23

[

−T DS cos(φ)
]

.

Here r is the epicentral distance, h is the source depth, z is the receiver depth, φ is the azimuth with respect to the source, and

ω is the angular frequency. The F j and Mi j are the Fourier transforms of the point force and point moment tensor source time

functions.

The strains expressed in terms of the cylindrical coordinate system displacements are

err =
∂ur

∂r
erφ =

1

2

(

1

r

∂ur

∂φ
+
∂uφ

∂r
−

uφ

r

)

eφφ =
1

r

(

∂uφ

∂φ
+ ur

)

erz =
1

2

(

∂uz

∂r
+
∂ur

∂z

)

ezz =
∂uz

∂z
eφz =

1

2

(

∂uφ

∂z
+

1

r

∂uz

∂φ

)

with the dilatation ∆ is given by

∆ = ∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uφ

∂φ
+
∂uz

∂z
= err + eφφ + ezz.

To compute the strains, it is necessary to obtain the partial derivatives of the displacements with respect to r, z and φ. The last

partial is easily obtained by taking derivatives of the sinφ and cos φ functions. The partial with respect to z is obtained from the

definition of the transformed stress, and the partial with respect to r is obtained using the properties of the Bessel functions.

Except for the cases of a uniform, isotropic wholespace and halfspace, there are no explicit expressions for the Fourier

transformed displacements.
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2 Wavenumber integration

The specific integrals for the Green’s functions used above are

ZDD =

∫ ∞

0

F1(k, ω)J0(kr)kdk

RDD = −

∫ ∞

0

F2(k, ω)J1(kr)kdk

ZDS =

∫ ∞

0

F3(k, ω)J1(kr)kdk

RDS =

∫ ∞

0

F4(k, ω)J0(kr)kdk

−
1

r

∫ ∞

0

[F4(k, ω) + F13(k, ω)] J1(kr)dk

T DS =

∫ ∞

0

F13(k, ω)J0(kr)kdk

−
1

r

∫ ∞

0

[F4(k, ω) + F13(k, ω)] J1(kr)dk

ZS S =

∫ ∞

0

F5(k, ω)J2(kr)kdk

RS S =

∫ ∞

0

F6(k, ω)J1(kr)kdk

−
2

r

∫ ∞

0

[F6(k, ω) + F14(k, ω)] J2(kr)dk

TS S =

∫ ∞

0

F14(k, ω)J1(kr)kdk

−
2

r

∫ ∞

0

[F6(k, ω) + F14(k, ω)] J2(kr)dk

ZEX =

∫ ∞

0

F7(k, ω)J0(kr)kdk

REX = −

∫ ∞

0

F8(k, ω)J1(kr)kdk

ZVF =

∫ ∞

0

F9(k, ω)J0(kr)kdk

RVF = −

∫ ∞

0

F10(k, ω)J1(kr)kdk

ZHF =

∫ ∞

0

F11(k, ω)J1(kr)kdk

RHF =

∫ ∞

0

F12(k, ω)J0(kr)kdk

−
1

r

∫ ∞

0

[F12(k, ω) + F15(k, ω)] J1(kr)dk

T HF = −

∫ ∞

0

F15(k, ω)J0(kr)kdk

+
1

r

∫ ∞

0

[F12(k, ω) + F15(k, ω)] J1(kr)dk

where the Fi functions here are solutions of a particular differential equation in z. Explicit expressions for the Fi exist for a

uniform, isotropic wholespace and halfspace.
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As an example, the ZDD for a source at z = in a uniform, isotropic whole space is

ZDD = ZDD(r, z, 0, ω) =
−1

4πρ(iω)2

[

3
∂3Fα

∂z3
+ k2

α

∂Fα

∂z
− 3
∂3Fβ

∂z3
− 3k2

β

∂Fβ

∂z

]

where ρ is the density, α and β are the P- and S-wave velocities, respectively, and the FV is the Sommerfeld integral

FV =
1

R
e
−iωR

V =

∫ ∞

0

k

νV
e−νV |z|J0(kr)dk

where R2
= r2
+ z2, ν2

V
= k2 − (ω/V)2. Using the Sommerfeld integral and its derivatives, the F1 for with ZDD is

F1(k, ω) = −
1

4πρ(iω)2
[(2k2

α − 3k2)e− να | z | + 3k2e− νβ | z | ] sgn(z)

with the function sgn(z), defined as

sgn(z) =



























−1 z < 0

0 z = 0

1 z > 0

.

It can be shown (see Appendix) that the permanent offset in a uniform, isotropic wholespace due to a unit step in force or

moment acting at z = 0 is obtained by evaluating the integrals after taking the limit ω→ 0 of the Fi. In the case of ZDD, one has

F1 =
1

4πρ

[

2

α2
−

3

2
k|z|

(

1

α2
−

1

β2

)]

sgn(z)e−k|z|

from which one obtains

ZDD =
1

4πρ

[

2

α2

z

R3
−

3

2

(

1

α2
−

1

β2

) (

3z3

R5
−

z

R3

)]

In the discussion that follows on the numerical implementation of the Fourier-Bessel transforms, the value of F j functions as

ω → 0, or equivalently when k ≫ ω/Vmin, will be useful. The dependence of these integrands for large k will be guided by the

F j(k, ω = 0) functions for the cases of a uniform, isotropic wholespace and halfspace.

The integrands for a uniform isotropic wholespace are

F1 =
1

4πρ

[

2

α2
−

3

2
k|z|

(

1

α2
−

1

β2

)]

sgn(z)e−k|z| F9 = −
1

4πρk
e−k|z|

[

k|z|

2

(

1

α2
−

1

β2

)

−
1

2

(

1

α2
+

1

β2

)]

F2 = −
1

4πρ

[

2

α2
−

3

2
k|z|

(

1

α2
−

1

β2

)

−
3

2

(

1

α2
+

1

β2

)]

e−k|z| F10 =
1

4πρ
e−k|z| z

2

(

1

α2
−

1

β2

)

F3 = −
1

4πρ

[

1

β2
+ k|z|

(

1

α2
−

1

β2

)

−

(

1

α2
+

1

β2

)]

e−k|z| F11 = −
1

4πρ
e−k|z| z

2

(

1

α2
−

1

β2

)

F4 =
1

4πρ

[

k|z|

(

1

α2
−

1

β2

)

+
1

β2

]

e−k|z|sgn(z) F12 =
1

4πρk
e−k|z|

[

k|z|

2

(

1

α2
−

1

β2

)

+
1

2

(

1

α2
+

1

β2

)]

F5 = −
k

4πρ
e−k|z| z

2

(

1

α2
−

1

β2

)

F13 = −
1

4πρβ2
e−k|z|sgn(z)

F6 =
1

4πρ
e−k|z|

[

k|z|

2

(

1

α2
−

1

β2

)

+
1

2

(

1

α2
+

1

β2

)]

F14 = −
1

4πρβ2
e−k|z|

F7 =
1

4πρα2
e−k|z|sgn(z) F15 = −

1

4πρβ2k
e−k|z|

F8 = −
1

4πρα2
e−k|z|
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and the integrands at the surface of a uniform, isotropic halfspace are

F1 =

β2

α2 − 3kh

(

β2

α2 − 1

)

4πρβ2
(

β2

α2 − 1
) e−kh F9 = −

1 − kh

(

β2

α2 − 1

)

4πρβ2k
(

β2

α2 − 1
)e−kh

F2 = −

(

3 − 4
β2

α2

)

+ 3kh

(

β2

α2 − 1

)

4πρβ2
(

β2

α2 − 1
) e−kh F10 =

−
β2

α2 + kh

(

β2

α2 − 1

)

4πρβ2k
(

β2

α2 − 1
) e−kh

F3 =
2kh

4πρβ2
e−kh F11 = −

β2

α2 + kh

(

β2

α2 − 1

)

4πρβ2k
(

β2

α2 − 1
) e−kh

F4 = −
2

4πρβ2
(1 − kh)e−kh F12 = −

1 + kh

(

β2

α2 − 1

)

4πρβ2k
(

β2

α2 − 1
)e−kh

F5 = −

β2

α2 + kh

(

β2

α2 − 1

)

4πρβ2
(

β2

α2 − 1
) e−kh F13 =

2

4πρβ2
e−kh

F6 = −

1 + kh

(

β2

α2 − 1

)

4πρβ2
(

β2

α2 − 1
) e−kh F14 = −

2

4πρβ2
e−kh

F7 =
2

4πρ(β2 − α2)
e−kh F15 = −

2

4πρβ2k
e−kh

F8 =
2

4πρ(β2 − α2)
e−kh

An examination of these functions shows that most are of the form

(A + Bk)e−kh

while two are of the form

(A + Bk)k−1e−kh

3 Numerical integration

Numerically, the integral must be approximated through a summation, but the real problem is that it is not feasible to approach

the k → ∞ limit and thus a kmax must used. Hence

∫ ∞

0

F(k, ω)Jn(kr)dk ≈

∫ kmax

0

F(k, ω)Jn(kr)dk

For large k, e.g., k ≫ ω/Vmin, the integrand should be of the form [ak−1
+b+ ck+dk2]e−khJn(kr). When h is large, the exponential

decay means that it may be feasible to define a value for kmax. However, when h is small, then some other approach must be used.

One approach is to consider a function independent of frequency such that an analytic expression exists such that g(r) =
∫ ∞

0
G(k)Jn(kr)dk. Thus

∫ ∞

0

F(k, ω)Jn(kr)dk =

∫ ∞

0

[

F(k, ω) −G(k)
]

Jn(kr)dk + g(r)

≈

∫ kmax

0

[

F(k, ω) −G(k)
]

Jn(kr)dk + g(r)

Now if G(k) ≈ lim
ω→0

F(k, ω) for k > kmax, then the approximation above is effectively an equality.
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The difficult part of imnplementing the numerical integration is when to use this asymptitic technique, e.g., whether to use the

approximation
∫ ∞

0

F(k, ω)Jn(kr)dk ≈

N−1
∑

i=0

F(ki, ω)Jn(kr)∆k)

or
∫ ∞

0

F(k, ω)Jn(kr)dk ≈

N−1
∑

i=0

[

F(ki, ω) −G(ki)
]

Jn(kr)∆k + g(r)

where ∆ki = 0.218∆k+ i∆k and ∆k = 2π/L and L is chosed such that L > 2r and (L− r)2
+ z2 > (Vmaxtmax)2 (Bouchon, 1981) and

Herrmann and Mandal (1986).

Subroutine wvlimit of program hspec96strain defines kmax and whether or not to use the asymptotic function g(r) ↔ G(k) in

the subroutine wvlimit.

If the asymptotic approach is used, then solu is used to define the parameters a, b and c in [a + bk + ck2]e−kh. In its current

form (April 9, 2025), [a + bk]e−kh is used for the determination of displacements and the d
dr

derivative, and[bk + ck2]e−kh is used

for the d
dz

derivatives.

For the F j, j = 9, 10, 12, 15, which have 4 k in the denominator, the trick is that

∫ ∞

0

F jJn(kr)dk =

∫ ∞

0

[pkF j] [Jn(kr)/k]dk (1)

and thus at large k kF j(k) is modeled as [a + bk]e−kh.

The logic in subroutine wvlimit is somewhat ad hoc and requires additional effort, especially in the case the h → 0. It is not

perfect, as seedn in the examples. This is a research area.

The next figure illustrates the region in (k, ω) space for F2 for a uniform, isotropic halfspace that is used in the numerical

integration. Specifically, in the case of h = 1km and z = 0km, the asymptotic approach is used.

2 4 6 8 10 12

k  ( 1 / k m )

0 . 3 0

0 . 6 0

0 . 9 0

1 . 2 0

1 . 5 0

f 
(H

z
)

2 4 6 8 10 12

k  ( 1 / k m )

0 . 3 0

0 . 6 0

0 . 9 0

1 . 2 0

1 . 5 0

f 
(H

z
)

2 4 6 8 10 12

k  ( 1 / k m )
2 4 6 8 10 12

k  ( 1 / k m )

Figure 1: The real part of the F2(k, f ) integrand for source depths of 1.0 (left) and 10.0 km (right). The circles represent 4ω/vmin,

while the diamonds and triangle represent wavenumbers 2.5/h and 6/h, respectively when the asymptotic technique is applied.

The shaded area is not used for the integration.

This figure also highlights the computational effort required to make synthetics. The integrand F(k, ω) is evaluated in a

triangular region. The number of evaluations ois NkNω. The Nyquist frequency, defining the maximum frequency, is related to

the sampling interval by fmax = 1/2∆, and the length of the time series is N∆t. hus
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4 Bessel functions

Although the Bessel functions are intrinsic to today’s FORTRAN compilers, special care must be taken when using them for

determining Green’s functions that have near-field terms, e.g., RDS , T DS , RS S , TS S , RHF and T HF because of the need to

evaluate the the J1(kr)/r and J2(kr)/r terms as r → 0. In addition, computation of strain requires the derivatives dJn(kr)/dr and

d[Jn(kr)/r)]/dr which are not in standard function libraries.

Some Bessel function properties (Abramowitz and Stegun, AS9.1.27 and AS9.1.28) are

J2(kr) =
2

kr
J1(kr) − J0(kr)

dJ0(kr)

dr
= −kJ1(kr)

dJ1(kr)

dr
= kJ0(kr) −

1

r
J1(kr)

dJ2(kr)

dr
= kJ1(kr) −

2

r
J2(kr)

d[J1(kr)/r]

dr
=

1

r

[dJ1(kr)

dr
−

1

r
J1(kr)

]

d[J2(kr)/r]

dr
=

1

r

[dJ2(kr)

dr
−

1

r
J2(kr)

]

where the argument kr is used to bring the relations into the form required for wavenumber integreation.

Obviously there is an apparent problem with the 1
r

terms at r = 0, but there can also be numerical problems when r is small.

The subroutine dhank in hspec96strain uses the series expansions of (Abramowitz and Stegun §9.4). These are summarized here.

Since this section focuses on the evaluation of the functions and their derivatives for small r, those cases are given last:

4.1 3 ≤ x < ∞

J0(x) = x−
1
2 f0 cos θ0

J1(x) = x−
1
2 f1 cos θ1

where the f0 and θ0 are given in (Abramowitz and Stegun, 9.4.3) and the f1 and θ1 in (9.4.6). Since x is never zero, the relations

given above can be used to obtain the required dreivatives.

4.2 0 ≤ x ≤ 3

In this case, one could carefully use an if statement in the code to flag the r = 0 case, but there will still be a numerical roundoff

problem that will affect the synthetics. Instead the code starts with the polynomial approximations for J0(z) (AS 9.4.1) and

x−1J1(x) (AS 9.4.4). Rather than clutter this discussion with actual coeffients, these polynomials are of the form

J0(x) = a0 + a2x2
+ a4x4 + a6x6

+ a8x8
+ a10x10

+ a12x12 units

J1Z(x) = x−1J1(x) = b0 + b2x2
+ b4x4

+ b6x6
+ b8x8

+ b10x10
+ b12x12

(Note that Abramowitz and Stegun use a power series in terms of (x/3).)

Given these coefficients, one can write

J2(x) = c2x2
+ c4x4

+ c6x6
+ c8x8

+ c10x10
+ c12x12
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where

c0 = 0 using actual a0 and b0coefficients

c2 = 2b2 − a2

c4 = 2b4 − a4

c6 = 2b6 − a6

c8 = 2b8 − a8

c10 = 2b10 − a10

c12 = 2b12 − a12

Given these we have

J1(kr) = kr J1Z(kr)

1

r
J1(kr) = k J1Z(kr)

dJ0(kr)

dr
= −J1(kr)

dJ1(kr)

dr
= k

[

b0 + 3b2x2
+ 5b4x4

+ 7b6x6
+ 9b8x8

+ 11b10x10
+ 13b12x12

]

x=kr

d[J1(kr)/r]

dr
= k2

[

2b2x + 4b3x3
+ 6B6x5

+ 8b8x7
+ 10b10x9

+ 12b12x11
]

x=kr

dJ2(kr)

dr
) = k

[

2c2x + 4c4x3
+ 6c6x5

+ 8c8x7
+ 10c10x9

+ 12c12x11
]

x=kr

d[J2(kr)/r]

dr
) = k2

[

c2 + 3c4x2
+ 5c6x4

+ 7c8x6
+ 9c10x9

+ 11c12x10
]

x=kr

Finally, in the actual code, the series are evaluated using Horner’s rule, e.g., y = a0+x(a1+x∗(a2)) rather than y = a0+a1x+a2x2

for numerical and computational efficiency.
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6 Appendix

For a step source-time function, the displacement traces for the complete solution have a step offset at times following the S-

wave arrival. These offsets are the permanent deformation due to the application of a step force. This can easily be obtained by

taking the limit of the Fourier transform of the displacement as ω → 0. The proof for this statement is very simple. If d(t) is

the displacement as a function of t, it is related to the velocity, v(t), through the integral definition d(t) =
∫ t

−∞
v(τ)dτ. Thus the

permanent deformation is d(∞). In addition the Fourier transform of the velocity at zero frequency is V(0) =
∫ ∞

−∞
v(τ)dτ, where

we use the Fourier transform pair v(t)⇔ V(ω). Thus the permanent offset is related to the V(ω) by the relation d(∞) = V(0).
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